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3. COURSE POLICIES vii

3. Course Policies

Please be sure to read the syllabus on the course webpage for more general course
policies.

Calculators: You are allowed a 1-line scientific calculator on all quizzes and
exams. Check the course webpage for a graphic detailing what a 1-line scientific
calculator is.

Homework: Homework on each lesson is due the morning before the next lesson.
All homework is done on Loncapa, an online homework system developed by Michigan
State University with problems programmed by Purdue graduate students. You will
have 10 tries on each homework problem unless otherwise noted.

All homework questions must be directed to Piazza (linked through Blackboard).
I will not answer homework questions in my email.

Exams: There will be 4 midterm exams and a final exam. The midterm exams
will be 75 minutes long in Elliot Hall 116 and the final will be 2 hours long.

Quizzes: Quizzes are graded out of 10 points where turning in anything with
your name on it will garner 1 point. The only way to get 0 points is to not turn in
anything.

Textbook: The official course textbook is found on Loncapa between the home-
work questions. It includes videos and written examples. Take time to watch the
videos and read through the examples because many times they will directly address
homework problems. This document is not the course textbook.





Lesson R: Review of Basic Integration

1. Differentiation versus Integration

Differentiation
d

dx
, f ′

Tangent lines
How a Function Changes

FTC←→

Integration∫
f(x) dx,

∫ b

a

f(x) dx

Area under a curve
How a Function Accumulates

Theorem 1 (Fundamental Theorem of Calculus (FTC)).

(a)

∫ b

a

f ′(x) dx = f(b)− f(a)

(b)
d

dx

(∫ x

a

f(t) dt

)
= f(x)

Fact 2. The Fundamental Theorem of Calculus (FTC) tells us that derivatives
and integrals are “opposites”, i.e., differentiation undoes integration and integration
undoes differentiation.

Integrals come in two flavors: indefinite and definite.

The indefinite integral of f(x), denoted
∫
f(x) dx, is the list of all functions

F (x) that F ′(x) = f(x). All such F (x) differ by a constant, which is where the +C
comes from.

1



2 LESSON R: REVIEW OF BASIC INTEGRATION

A definite integral is a number that describes the area under the curve over
a specified interval. A definite integral always includes bounds. This may be repre-
sented by a graph.

Ex 1. The definite integral of x2 from −1 to 1 is represented by this graph

Figure 1. This is the geometric representation of

∫ 1

−1

x2 dx.

For a definite integral, you need bounds. Here, the bounds are x = −1 and x = 1
(which corresponds to the interval [−1, 1]).

2. Basic Integration

Examples.

1. Evaluate

∫
7x3 dx and

∫ 2

1

7x3 dx.

Solution: The first integral is an indefinite integral and the second is a
definite integral. We write∫

7x3 dx = 7

∫
x3 dx

= 7

(
1

3 + 1
x3+1

)
+ C

= 7

(
1

4

)
x4 + C

=
7

4
x4 + C

Next, we find the definite integral:



2. BASIC INTEGRATION 3

∫ 2

1

7x3 dx = 7

∫ 2

1

x3 dx

= 7

(
1

3 + 1

)
x3+1

∣∣∣∣2
1

= 7

(
1

4

)
x4

∣∣∣∣2
1

=
7

4
x4

∣∣∣∣2
1

=
7

4

[
(2)4 − (1)4

]
=

7

4
[16− 1]

=
7

4
(15)

=
105

4

Observe that we didn’t need to do the full integration again to find the
definite integral. Besides adding a +C, the function we find in the indefinite
integral is the function at which we evaluate the bounds for the definite
integral.

2. Evaluate

∫
2ex dx and

∫ ln 2

0

2ex dx.

Solution: Write ∫
2ex dx = 2

∫
ex dx

= 2(ex) + C

= 2ex + C

Next, ∫ ln 2

0

2ex dx = 2ex
∣∣∣∣ln 2

0

= 2 eln 2︸︷︷︸
�

−2e0

= 2(2)− 2(1)

� eln x = x, hence eln 2 = 2



4 LESSON R: REVIEW OF BASIC INTEGRATION

= 4− 2

= 2

3. Evaluate

∫
1

2
sec2 x dx and

∫ π/3

0

1

2
sec2 x dx.

Solution: Trig functions will periodically show up in this class although
there is no lesson specifically addressing them. Take time to review these
functions for the handful of times they appear.

∫
1

2
sec2 x dx =

1

2

∫
sec2 x dx

=
1

2
tanx+ C∫ π/3

0

1

2
sec2 x dx =

1

2

∫ π/3

0

sec2 x dx

=
1

2
tanx

∣∣∣∣π/3
0

=
1

2
tan (π/3)− 1

2
tan (0)

=
1

2

√
3− 1

2
(0)

=

√
3

2

4. Evaluate

∫
3

x
dx and

∫ e7

e

3

x
dx.

Solution: Recall that

1

x
= x−1

and this is the single exception to the power rule:∫
1

x
dx = ln |x|+ C.

Write ∫
3

x
dx = 3

∫
1

x
dx

= 3 ln |x|+ C



2. BASIC INTEGRATION 5

Next, ∫ e7

e

3

x
dx = 3

∫ e7

e

1

x
dx

= 3 ln |x|
∣∣∣∣e7
e

= 3 ln |e7| − 3 ln |e|

= 3 ln(e7)︸ ︷︷ ︸
��

−3 ln(e)︸︷︷︸
��

since e, e7 > 0

= 3(7)− 3(1)

= 21− 3

= 18

5. Evaluate

∫ 6

0

(4ex − 9) dx.

Solution: We are allowed to split up an integral over a plus or minus
sign. Write∫ 6

0

(4ex − 9) dx =

∫ 6

0

4ex dx−
∫ 6

0

9 dx

= 4

∫ 6

0

ex dx−
∫ 6

0

9 dx

= 4ex
∣∣∣∣6
0

− 9x

∣∣∣∣6
0

= 4ex − 9x

∣∣∣∣6
0

= 4e6 − 9(6)− [4 e0︸︷︷︸
1

−9(0)]

= 4e6 − 54− [4− 0]

= 4e6 − 54− 4

= 4e6 − 58

6. Find

∫
(x− 1)2 dx.

Solution: Before we integrate, we need to FOIL out the function. Write

(x− 1)2 = (x− 1)(x− 1)

� � ln ex = x, hence ln e7 = 7, ln e = ln e1 = 1, ln 1 = ln e0 = 0
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= x(x) + (−1)(x) + (−1)(x) + (−1)(−1)

= x2 − x− x+ 1

= x2 − 2x+ 1

Remark 3. Observe that (x− 1)2 6= x2 + 1.

Write ∫
(x− 1)2 dx =

∫
(x− 1)(x− 1) dx

=

∫
(x2 − 2x+ 1) dx

=

∫
x2 dx+

∫
(−2x) dx+

∫
1 dx

=
1

2 + 1
x2+1 − 2

1 + 1
x1+1 + x+ C

=
1

3
x3 − 2

2
x2 + x+ C

=
1

3
x3 − x2 + x+ C

7. Find

∫ 4

1

x4 +
√
x3

√
x

dx.

Solution: We need to remember how to deal with exponents. A square

root is denoted by a
1

2
in the exponent, so we write

√
x3 = (x3)1/2 = x3/2.

Hence, our function can be rewritten as

x4 +
√
x3

√
x

=
x4 + x3/2

x1/2
.

We can further simplify our function:

x4 + x3/2

x1/2
=

x4

x1/2
+
x3/2

x1/2

= x4−1/2 + x3/2−1/2

= x8/2−1/2 + x3/2−1/2

= x7/2 + x2/2

= x7/2 + x1
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Now, we can go forward with our integration:∫ 4

1

x4 +
√
x3

√
x

dx =

∫ 4

1

x4 + x3/2

x1/2
dx

=

∫ 4

1

(
x7/2 + x

)
dx

=
1

7/2 + 1
x7/2+1 +

1

1 + 1
x1+1

∣∣∣∣4
1

=
1

7/2 + 2/2
x7/2+2/2 +

1

2
x2

∣∣∣∣4
1

=
1

9/2
x9/2 +

1

2
x2

∣∣∣∣4
1

=
2

9
x9/2 +

1

2
x2

∣∣∣∣4
1

=
2

9
(4)9/2 +

1

2
(4)2 −

[
2

9
(1)9/2 +

1

2
(1)2

]
=

2

9
(41/2)9 +

1

2
(16)−

[
2

9
+

1

2

]
=

2

9
(2)9 + 8− 2

9
− 1

2

=
2179

18

3. Additional Examples

Examples.

1. Find the definite integral that is described by the following:



8 LESSON R: REVIEW OF BASIC INTEGRATION

Solution: We need two things: (1) the function and (2) the bounds.

(1) This line passes through (3, 1) and (6, 2). Thus, its slope is given by

2− 1

6− 3
=

1

3
. Further, the line passes through the point (0, 0). Recall

that point slope form is given by

y − y0 = m(x− x0)

which means the function of this line is

y − 0 =
1

3
(x− 0) ⇒ y =

1

3
x.

(2) The bounds are x = 2 and x = 6 because the shaded region lies between
these x-values.

Thus, the definite integral that is represented by the graph above is

∫ 6

2

1

3
x dx .

2. What is the value of the definite integral from # 2?

Solution: We write

∫ 6

2

1

3
x dx =

∫ 6

2

1

3
x1 dx

=

(
1/3

1 + 1
x1+1

) ∣∣∣∣6
2

=
1/3

2
x2

∣∣∣∣6
2

=
1

6
x2

∣∣∣∣6
2

=
1

6
(6)2 − 1

6
(2)2

=
36

6
− 4

6

=
32

6
=

16

3

3. Find the area of the region bounded by

y = x+ 3, y = 0, x = 1, x = 2.

Solution: First, draw the graph.
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Second, set up the definite integral. We want to find the area below x+3
and between x = 1 and x = 2, which is just the integral∫ 2

1

(x+ 3) dx.

Finally, we compute this definite integral:∫ 2

1

(x+ 3) dx =

∫ 2

1

x dx+

∫ 2

1

3 dx

=
1

1 + 1
x1+1

∣∣∣∣2
1

+ 3x

∣∣∣∣2
1

=
1

2
x2 + 3x

∣∣∣∣2
1

=
1

2
(2)2 + 3(2)−

(
1

2
(1)2 + 3(1)

)
=

1

2
(4) + 6− 1

2
− 3

= 2 + 6− 1

2
− 3

=
9

2
.

4. Suppose you start driving on the highway at 10:00 AM at a speed given by

s(t) =
15

2
t+ 45 mile/hour.

(a) How far have you gone by 12:30PM? Round your answer to the nearest

hundredth.



10 LESSON R: REVIEW OF BASIC INTEGRATION

Solution: Observe that this problem asks for a rounded answer, not
an exact answer. Check Appendix D for an example of the difference
between exact and rounded answers.

We need to find the distance traveled, that is, the number of miles
the car has accumulated, after 2.5 hours. But accumulation is what
integrals are built to compute. So, after we write down our definite
integral, we need only integrate and we’ll have our answer. The integral
we are looking for is given by∫ 2.5

0

(
15

2
t+ 45

)
dt.

Next, write∫ 2.5

0

(
15

2
t+ 45

)
dt =

15

2

(
1

2

)
t2 + 45t

∣∣∣∣2.5
0

=
15

4
t2 + 45t

∣∣∣∣2.5
0

=
15

4
(2.5)2 + 45(2.5)−

[
15

4
(0)2 − 45(0)

]
=

2175

16
− 0

≈ 135.94 miles .

(b) After how many hours will you have gone 100 miles? Round your answer

to the nearest hundredth.

Solution: In the previous question, we were asked about the dis-
tance traveled after a certain time. Here, we are given the distance and
asked about the time.

By our work in the previous problem, we have

distance traveled =

∫ time traveled

0

(
15

2
t+ 45

)
dt.

We are given distance traveled = 100. So, if we let x = time traveled,
then we get this equation:

100 =

∫ x

0

(
15

2
t+ 45

)
dt.

Thus, our goal is to find x.

Write

100 =

∫ x

0

(
15

2
t+ 45

)
dt =

15

4
x2 + 45x.
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Subtracting 100 from both sides, we see we need to solve

15

4
x2 + 45x− 100 = 0.

After an application of the quadratic formula, we get

x ≈ 1.92 hours .

5. Evaluate ∫ π/6

−π/6
cotx sinx dx

Solution: We observe that since

cotx =
cosx

sinx
,

we may simplify this function:

cotx sinx =
cosx

sinx
(sinx) = cos x.

Thus, ∫ π/6

−π/6
cotx sinx dx =

∫ π/6

−π/6
cosx dx

= sinx

∣∣∣∣π/6
−π/6

= sin(π/6)− sin(−π/6)

=
1

2
−
(
−1

2

)
=

1

2
+

1

2
= 1

6. Find y(2) if y′ = x2 and y(1) = −1.

Solution: First, we find a generic antiderivative of y′ and, second, we
use the initial condition y(1) = −1 to solve for C. Once we have the specific
function y, we evaluate at x = 2.

So, ∫
x2 dx =

1

2 + 1
x2+1 + C

=
1

3
x3 + C.
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Next, since y(1) = −1, we may write

−1 =
1

3
(1)3 + C

=
1

3
+ C

⇒ −4

3
= C

Hence, the specific function is

y =
1

3
x3 − 4

3
.

Finally, we have

y(2) =
1

3
(2)3 − 4

3
=

8

3
− 4

3
=

4

3
.



Lesson 1A: Integration by Substitution (I)

1. Integration by Substitution

Integration and differentiation are opposite actions. For example,∫
x−1/2 dx =

1

−1/2 + 1
x−1/2+1 + C =

1

1/2
x1/2 + C = 2x1/2 + C

and

d

dx
(2x1/2 + C) = 2

(
1

2

)
x1/2−1 = x−1/2 .

Now, suppose we are given the function 12x2(x3 + 7)3 and asked to integrate. If
we knew that, by the chain rule,

(1)
d

dx
(x3 + 7)4 = 4(x3 + 7)3(3x2) = 12x2(x3 + 7)3,

then

(2)

∫
12x2(x3 + 7)3 dx = (x3 + 7)4 + C

by the reasoning as above. But how would we have determined (2) if we didn’t already
have (1)?

The process of integrating a function that’s the product of the chain rule is called
u-substitution. In some sense, this integration method is a sort of reverse engi-
neering. Remember that, for the chain rule, you have an “inside” function and an
“outside” function. The derivative of such a function is the product of the derivative
of the inside function with the derivative of the outside function evaluated at the
inside function.

Ex 1.

d

dx
(x3 + 7)4 = 4(x3 + 7)3︸ ︷︷ ︸

derivative of outside
evaluated at inside

derivative of
inside︷ ︸︸ ︷
(3x2)

Here, the inside function is x3 + 7 and the outside function is x4.

Now, to apply u-sub in this case, let u = x3 + 7, the inside function. Then, if we
differentiate, we see that

du

dx
= 3x2.

13



14 LESSON 1A: INTEGRATION BY SUBSTITUTION (I)

Next, we substitute. Write∫
4(x3 + 7︸ ︷︷ ︸

u

)3 (3x2)︸ ︷︷ ︸
du/dx

dx =

∫
4u3

(
du

dx

)
dx

=

∫
4u3 du

But this we know how to integrate. We have∫
4u3 du =

4

3 + 1
u3+1 + C =

4

4
u4 + C = u4 + C.

However, we have not answered the question. We were asked about
∫

4(x3+7)3(3x2) dx,
which is a function in terms of x and we must respond in terms of x.

Since u = x3 + 7, we substitute again to get∫
12x2(x3 + 7)3 dx = u4 + C = (x3 + 7)4 + C.

Important Note: For u-sub, the chosen u must eliminate the original variable
else you cannot continue to integrate.

Ex 2. Suppose we are asked to evaluate∫
(x+ 1)−1/2 dx.

The inside function is u = x+ 1 but if we just write∫
(x+ 1)−1/2 dx =

∫
u−1/2 dx

then this is wrong. dx refers to the variable with which we are integrating and it is
difficult to make sense of integrating a function of u with respect to x in this context.
As a result, we must completely eliminate the original variable.

If u = x+ 1, then
du

dx
= 1. So∫

(x+ 1)−1/2 dx =

∫
u−1/2 · 1 · dx

=

∫
u−1/2 · du

dx
· dx

=

∫
u−1/2 du

=
1

−1/2 + 1
u−1/2+1 + C

=
1

1/2
u1/2 + C
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= 2u1/2 + C

= 2(x+ 1)1/2 + C

Remark 4. If you are unable to completely eliminate the original variable via
your choice of u, then either this is the wrong choice of u or this integral cannot be
addressed via u-substitution.

Examples.

1. Evaluate

∫
x
√

10− 2x2 dx.

Solution: Here, the inside function is u = 10− 2x2 and
du

dx
= −4x. But

there is no −4x in this integral, so what do we do? Well, there are a couple
of ways to address this and which method you use depends on what makes
the most sense to you.

Method 1: Replace x

If
du

dx
= −4x, then x = −1

4

du

dx
and we can write∫

x
√

10− 2x2 dx =

∫
−1

4

du

dx︸ ︷︷ ︸
x

√
u dx

=

∫
− 1

4

√
u
du

dx
dx

=

∫
− 1

4

√
u du

= −1

4

∫ √
u du

= −1

4

∫
u1/2 du

= −1

4

(
1

1/2 + 1

)
u1/2+1 + C

= −1

4

(
1

3/2

)
u3/2 + C

= −1

4

(
2

3

)
u3/2 + C

= −1

6
u3/2 + C

= −1

6
(10− 2x2)3/2 + C
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Method 2: Replace dx

We know that
du

dx
= −4x, solving for dx we see that

dx = −du
4x
.

Substituting, we get∫
x
√

10− 2x2 dx =

∫
x
√
u

(
−du

4x

)
︸ ︷︷ ︸

dx

=

∫
− 1

4

√
u du

...

= −1

6
(10− 2x2)3/2 + C

as shown above.

2. Evaluate

∫
5x2ex

3

dx.

Solution: The inside function is u = x3 and so
du

dx
= 3x2. Again, there

are a couple of ways to approach this substitution. We can solve
du

dx
= 3x2

for x2 or we can solve for dx.

Method 1: Replace x2

We know that x2 =
1

3

du

dx
. So we write∫

5x2ex
3

dx =

∫
5

(
1

3

du

dx

)
︸ ︷︷ ︸

x2

eu dx

=

∫
5

3
eu
du

dx
dx

=

∫
5

3
eu du

=
5

3
eu + C

=
5

3
ex

3
+ C

Method 2: Replace dx
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Solving for dx, we get dx =
du

3x2
. Write∫

5x2ex
3

dx =

∫
5x2eu

(
du

3x2

)
︸ ︷︷ ︸

dx

=

∫
5

3
eu du

...

=
5

3
ex

3
+ C

as shown above.

3. Evaluate

∫
cos(2x)

sin3(2x)
dx.

Solution: For this integral, it is very important that we choose the cor-
rect u. If we choose the wrong u, then we won’t be able to completely
eliminate x.

Take u = sin(2x), then
du

dx
= 2 cos(2x). Again, we can approach this in

different ways.

Method 1: Replace cos(2x)

If
du

dx
= 2 cos(2x), then cos(2x) =

1

2

du

dx
. Write∫

cos(2x)

sin3(2x)
dx =

∫
cos(2x)

1

sin3(2x)
dx

=

∫ (
1

2

du

dx

)
︸ ︷︷ ︸

cos(2x)

1

u3
dx

=

∫
1

2

1

u3
du

=
1

2

∫
1

u3
du

=
1

2

∫
u−3 du

=
1

2

(
1

−3 + 1

)
u−3+1 + C

=
1

2

(
1

−2

)
u−2 + C
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= −1

4
u−2 + C

= −1

4
(sin(2x))−2 + C

Method 2: Replace dx

Since
du

dx
= 2 cos(2x), we know that dx =

du

2 cos(2x)
. Hence,∫

cos(2x)

sin3(2x)
dx =

∫
cos(2x)

u3

(
du

2 cos(2x)

)
︸ ︷︷ ︸

dx

=

∫
1

2u3
du

...

= −1

4
(sin(2x))−2 + C

as we see above.

2. Additional Examples

Examples.

1. Evaluate

∫
(3 +

√
x)3

√
x

dx.

Solution: Typically when integrating, it is easiest to rewrite roots in
terms of their fractional exponents. In particular, the function here can be
rewritten

(3 +
√
x)3

√
x

=
(3 + x1/2)3

x1/2
.

Remark 5. Observe that (3 +
√
x)3 6= 33 + (

√
x)3.

Written like this, take u = 3 + x1/2, then
du

dx
=

1

2
x−1/2. We replace dx in

the integral, but observe that replacing x−1/2 works equally well.

We see that dx = 2x1/2 du and write∫
(3 +

√
x)3

√
x

dx =

∫
(3 + x1/2)3

x1/2
dx
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=

∫
u3

x1/2
(2x1/2 du)

=

∫
2u3 du

=
2

3 + 1
u3+1 + C

=
2

4
u4 + C

=
1

2
u4 + C

=
1

2
(3 +

√
x)4 + C

2. Evaluate

∫
6etan(13x) sec2(13x) dx.

Solution: Take u = tan(13x), then
du

dx
= 13 sec2(13x). Solving for dx,

we have

dx =
du

13 sec2(13x)
.

Next, we write∫
6etan(13x) sec2(13x) dx =

∫
6eu sec2(13x)

(
du

13 sec2(13x)

)
=

∫
6

13
eu du

=
6

13
eu + C

=
6

13
etan(13x) + C

3. A pork roast is removed from the freezer and left on the counter to defrost.
The temperature of the pork roast is −4◦C when it was removed from the
freezer, and t hours later was increasing at a rate of

T ′(t) = 10.6e−0.3t◦C/hour.

Assume the pork is defrosted when its temperature reaches 11◦C. How long
does it take for the pork roast to defrost? (Estimated answer rounded off to
4 decimal places.)

Solution: Our goal here is to find the time t such that T (t) = 11 (which
is the temperature at which the roast is defrosted). We are given T ′ and that
T (0) = −4 (because this is the initial temperature of the roast). We need to
integrate T and use the initial condition T (0) = −4 to solve for C.
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Let u = −0.3t, then
du

dt
= −0.3. So, dt = − du

0.3
and∫

10.6e−0.3t dt =

∫
10.6eu

(
− du

0.3

)
=

∫
− 10.6

0.3
eu du

= −10.6

0.3
eu + C

= −10.6

0.3
e−0.3t + C

Now, since T (0) = −4, we see that

−4 = −10.6

0.3
e−0.3(0)︸ ︷︷ ︸

1

+C

⇒ −4 +
10.6

0.3
= C

Therefore, our temperature function is given by

T (t) = −10.6

0.3
e−0.3t − 4 +

10.6

0.3
.

Our final step is to find t such that T (t) = 11. Write

11 = −10.6

0.3
e−.3t − 4 +

10.6

0.3

⇒ 11 + 4− 10.6

0.3
= −10.6

0.3
e−0.3t

⇒ −
(0.3)

(
15− 10.6

0.3

)
10.6

= e−0.3t

⇒ ln

−(0.3)

(
15− 10.6

0.3

)
10.6

 = −0.3t

⇒ − 1

0.3
ln

−(0.3)

(
15− 10.6

0.3

)
10.6

 = t

which implies
t ≈ 1.8419 hours



Lesson 1B: Integration by Substitution (II)

1. Definite Integration Via u-substitution

We dealt with indefinite integration via u-substitution and now we address definite
integration via u-substitution. In the integral∫ 1

0

6x(x2 − 1)2 dx,

the dx (called a differential) tells us that 0 and 1 are bounds for x, that is, 0 ≤ x ≤ 1.
We should take u = x2 − 1, which means that

du

dx
= 2x ⇒ dx =

du

2x
.

But we cannot write ∫ 1

0
6x(x2 − 1)2 dx =

∫ 1

0
3u2 du

because this implies 0 ≤ u ≤ 1 — which is not necessarily true. Since u = x2 − 1,
u 6= x which means the bounds for u shouldn’t be the same as the bounds for x. All
this is saying is that we must change the bounds if we change the variable.

We can address this change of bounds in a couple of different ways.

Method 1: Rewrite the bounds in terms of u

Again,

∫ 1

0

6x(x2 − 1)2 dx has bounds in terms of x. Since u = x2 − 1, we can

evaluate u at x = 0 and x = 1. Write

u(0) = 02 − 1 = −1

u(1) = 12 − 1 = 0

Then, ∫ 1

0

6x(x2 − 1)2 dx =

∫ u(1)

u(0)

3u2 du

=

∫ 0

−1

3u2 du

=
3

2 + 1
u2+1

∣∣∣∣0
−1

21
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=
3

3
u3

∣∣∣∣0
−1

= u3

∣∣∣∣0
−1

= 03 − (−1)3

= −(−1)

= 1

With this method, you never need to return to the original variable.

Method 2: Return to the original variable. Write∫ 1

0

6x(x2 − 1)2 dx =

∫ u(1)

u(0)

3u2 du

=
3

2 + 1
u2+1

∣∣∣∣u(1)

u(0)

=
3

3
u3

∣∣∣∣u(1)

u(0)

= u3

∣∣∣∣u(1)

u(0)

= (x2 − 1)3

∣∣∣∣1
0

= (12 − 1)3 − (02 − 1)3

= (0)3 − (−1)3

= −(−1)

= 1

In this method, you don’t need to determine the bounds in terms of u.

Examples.

1. Evaluate

∫ 2

−1

24(x2 − 2)(x3 − 6x)4 dx.

Solution: Choosing the correct u here might seem a little tricky. The
only function that has an inside and an outside function is (x3−6x)4, so take

u = x3 − 6x. Then
du

dx
= 3x2 − 6. We use the method of solving for dx:
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dx =
du

3x2 − 6
.

Next, we need to address the bounds of this integral. We go through the
two methods.

Method 1: Rewrite the bounds in terms of u

u = x3 − 6x and x = −1, x = 2 which means

u(−1) = (−1)3 − 6(−1) = −1 + 6 = 5

u(2) = (2)3 − 6(2) = 8− 12 = −4

Now, we see∫ 2

−1

24(x2 − 2)(x3 − 6x)4 dx =

∫ u(2)

u(−1)

24(x2 − 2)u4

(
du

3x2 − 6

)
︸ ︷︷ ︸

dx

=

∫ −4

5

24
x2 − 2

3(x2 − 2)
u4 du

=

∫ −4

5

8u4 du

=
8

4 + 1
u4+1

∣∣∣∣−4

5

=
8

5
u5

∣∣∣∣−4

5

=
8

5

[
(−4)5 − (5)5

]
=

8

5
[−1024− 3125]

=
8

5
[−4149]

= −33,192

5

Method 2: Return to the original variable

We have∫ 2

−1

24(x2 − 2)(x3 − 6x)4 dx =

∫ u(2)

u(−1)

24(x2 − 2)u4

(
du

3x2 − 6

)
︸ ︷︷ ︸

dx

=

∫ u(2)

u(−1)

24
x2 − 2

3(x2 − 2)
u4 du
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=

∫ u(2)

u(−1)

8u4 du

=
8

4 + 1
u4+1

∣∣∣∣u(2)

u(−1)

=
8

5
u5

∣∣∣∣u(2)

u(−1)

=
8

5
(x3 − 6x)5

∣∣∣∣2
−1

=
8

5
(23 − 6(2))5 − 8

5
((−1)3 − 6(−1))5

=
8

5
(8− 12)5 − 8

5
(−1 + 6)5

=
8

5
(−4)5 − 8

5
(5)5

=
8

5
(−1024)− 8

5
(3125)

= −8192

5
− 25,000

5

= −33,192

5

2. Evaluate

∫ 4

0

3e2x dx.

Solution: Take u = 2x, then
du

dx
= 2 which means dx =

du

2
.

Method 1: Rewrite the bounds in terms of u

If u = 2x and x = 0, x = 4, then

u(0) = 2(0) = 0

u(4) = 2(4) = 8

So, we have ∫ 4

0

3e2x dx =

∫ u(4)

u(0)

3eu
(
du

2

)
︸ ︷︷ ︸

dx

=

∫ 8

0

3

2
eu du
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=
3

2
eu
∣∣∣∣8
0

=
3

2
e8 − 3

2
e0︸︷︷︸
1

=
3

2
e8 − 3

2

Method 2: Return to the original variable

Write ∫ 4

0

3e2x dx =

∫ u(4)

u(0)

3eu
(
du

2

)
︸ ︷︷ ︸

dx

=

∫ u(4)

u(0)

3

2
eu du

=
3

2
eu
∣∣∣∣u(4)

u(0)

=
3

2
e2x

∣∣∣∣4
0

=
3

2
e2(4) − 3

2
e2(0)

=
3

2
e8 − 3

2
e0︸︷︷︸
1

=
3

2
e8 − 3

2

There is also a cute trick with u-sub that is at times necessary when u is a linear
function (of the form u = mx+ b).

Ex 1. Evaluate

∫
x(3x+ 4)7 dx.

If we reasonably choose u = 3x+ 4, then∫
x(3x+ 4)7 dx =

∫
xu7

(
1

3
du

)
︸ ︷︷ ︸

dx

.

We have not completely eliminated x, but what other choice of u do we have?
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Luckily, we need only observe that if u = 3x+ 4, then x =
u− 4

3
. Hence,∫

x(3x+ 4)7 dx =

∫ (
u− 4

3

)
︸ ︷︷ ︸

x

u7

(
1

3
du

)

=
1

3 · 3

∫
(u− 4)u7 du

=
1

9

∫
(u8 − 4u7) du

=
1

9

[
1

8 + 1
u8+1 − 4

7 + 1
u7+1

]
+ C

=
1

9

[
1

9
u9 − 4

8
u8

]
+ C

=
1

81
u9 − 4

72
u8 + C

=
1

81
u9 − 1

18
u8 + C

=
1

81
(3x+ 4)9 − 1

18
(3x+ 4)8 + C

Examples.

3. Evaluate

∫ 3

0

3x√
x+ 1

dx.

Solution: This integral is a u-sub problem with u = x+ 1,
du

dx
= 2, and

x = u− 1. Write∫ 3

0

3x√
x+ 1

dx =

∫ u(3)

u(0)

3(u− 1)

u1/2
du

= 3

∫ u(3)

u(0)

u− 1

u1/2
du

= 3

∫ u(3)

u(0)

[
u

u1/2
− 1

u1/2

]
du

= 3

∫ u(3)

u(0)

[
u1/2 − u−1/2

]
du

= 3

((
1

1/2 + 1

)
u1/2+1 −

(
1

−1/2 + 1

)
u−1/2+1

) ∣∣∣∣u(3)

u(0)

= 3

((
1

3/2

)
u3/2 −

(
1

1/2
u1/2

)) ∣∣∣∣u(3)

u(0)
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= 3

(
2

3
u3/2 − 2u1/2

) ∣∣∣∣u(3)

u(0)

= 3

(
2

3
(x+ 1)3/2 − 2(x+ 1)1/2

) ∣∣∣∣3
0

= 3

(
2

3
(3 + 1)3/2 − 2(3 + 1)1/2

)
− 3

(
2

3
(0 + 1)3/2 − 2(0 + 1)1/2

)

= 3

(
2

3
(4)3/2 − 2(4)1/2

)
− 3

2

3
(1)3/2︸ ︷︷ ︸

1

−2 (1)1/2︸ ︷︷ ︸
1


= 2(2)3 − 6(2)− 2 + 6

= 2(8)− 12− 2 + 6

= 16− 12− 2 + 6

= 8

4. If the area of the region under the curve

y =
1

5x+ 2

over the interval 0 ≤ x ≤ a is 2, then what is a?

Solution: The area of the region under this curve over the interval [0, a]
is simply the integral ∫ a

0

1

5x+ 2
dx.

In particular, we are told that this integral is equal to 10. For this integral,

we take u = 5x+ 2 with
du

dx
= 5 and write∫ a

0

1

5x+ 2
dx =

∫ u(a)

u(0)

1

u

(
1

5
du

)
︸ ︷︷ ︸

dx

=
1

5

∫ u(a)

u(0)

1

u
du

=
1

5
ln |u|

∣∣∣∣u(a)

u(0)

=
1

5
ln |5x+ 2|

∣∣∣∣a
0

=
1

5
ln |5a+ 2| − 1

5
ln |5(0) + 2|
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=
1

5
ln |5a+ 2| − 1

5
ln |2|

=
1

5
(ln(5a+ 2)− ln 2)

=
1

5
ln

(
5a+ 2

2

)

because we assume that a > 0 and so 5a+ 2 > 0.

Putting this together,

2 =

∫ a

0

1

5x+ 2
=

1

5
ln

(
5a+ 2

2

)
.

Hence, we need only solve for a:

2 =
1

5
ln

(
5a+ 2

2

)
⇒ 10 = ln

(
5a+ 2

2

)
⇒ e10 =

5a+ 2

2

⇒ 2e10 = 5a+ 2

⇒ 2e10 − 2 = 5a

⇒ 2e10 − 2

5
= a

5. Evaluate

∫
27t2
√

3t+ 4 dt.

Solution: Let u = 3t + 4, then du = 3 dt ⇒ du

3
= dt. But we’re not

quite done yet since we cannot write

∫
27t2
√

3t+ 4 dt =

∫
27t2
√
u

(
du

3

)

because we must completely eliminate the original variable. Instead, we ob-
serve that

u = 3t+ 4⇒ t =
u− 4

3
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and write ∫
27t2
√

3t+ 4 dt =

∫
27

(
u− 4

3

)2√
u

(
du

3

)
=

∫ (
27

32 · 3

)
(u− 4)2

√
u du

=

∫
(u− 4)2

√
u du.

So now we can solve the integral as usual, even if it requires more com-
putation than we would like.∫

(u− 4)2
√
u du =

∫
(u2 − 8u+ 16)

√
u du

=

∫
(u4/2 − 8u2/2 + 16)u1/2 du

=

∫
(u5/2 − 8u3/2 + 16u1/2) du

=
2

7
u7/2 − 8

(
2

5

)
u5/2 + 16

(
2

3

)
u3/2 + C

=
2

7
u7/2 − 16

5
u5/2 +

32

3
u3/2 + C

=
2

7
(3t+ 4)7/2 − 16

5
(3t+ 4)5/2 +

32

3
(3t+ 4)3/2 + C .

You would get full credit on quiz for leaving your answer in the above
form.





Lesson 2: Integration by Substitution (III)

1. Solutions to In-Class Examples

Example 1. A certain plant grows at a rate

H ′(t) =
1

3
√

9t+ 2
inches per day,

t days after it was planted. How many inches will the height of the plant change on
the third day? Round your answer to the nearest thousandth.

Solution: The key to this problem is determining what t-values correspond to
the third day after the plant is planted. Consider

Day 1︸ ︷︷ ︸
0≤t<1

, Day 2︸ ︷︷ ︸
1≤t<2

, Day 3︸ ︷︷ ︸
2≤t<3

.

Hence, if we want to determine how the height of the plant changes on the third day,
then we are considering the integral∫ 3

2

1
3
√

9t+ 2
dt.

We rewrite the cube root as a fractional exponent:

1
3
√

9t+ 2
=

1

(9t+ 2)1/3
= (9t+ 2)−1/3.

Now, we approach this integral via u-sub. Let u = 9t+ 2, then
du

dt
= 9 which means

dt =
du

9
.

We have bounds in terms of t but, because we are changing variables, we need to
remake them into bounds in terms of u:

u(2) = 9(2) + 2 = 18 + 2 = 20

u(3) = 9(3) + 2 = 27 + 2 = 29

We write ∫ 3

2

1
3
√

9t+ 2
dt =

∫ 3

2

(9t+ 2)−1/3 dt

31
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=

∫ u(3)

u(2)

u−1/3

(
du

9

)
︸ ︷︷ ︸

dt

=

∫ 29

20

1

9
u−1/3 du

=
1

9

(
1

−1/3 + 1

)
u−1/3+1

∣∣∣∣29

20

=
1

9

(
1

2/3

)
u2/3

∣∣∣∣29

20

=
1

9

(
3

2

)
u2/3

∣∣∣∣29

20

=
1

6
u2/3

∣∣∣∣29

20

=
1

6
(29)2/3 − 1

6
(20)2/3

≈ 0.35 inches

Example 2. Suppose that as a yellow car brakes, its velocity is described by

v(t) = 2.3e1−t − 0.7 meters/second.

If the brakes are applied at time t = 0 seconds, what is the distance it takes for the
car to come to a complete stop. Round your answer to 3 decimal places.

Solution: Observe first that the integral of v(t) is the distance function, denoted
s(t). Also note that we have the initial condition s(0) = 0 because we assume that, at
the time t = 0, we have gone no distance. But we aren’t quite done yet. Ultimately,
we need to compute s(t0) where t0 is the time such that v(t0) = 0 (which is when the
car will have come to a stop).

We begin by computing s(t) =
∫
v(t) dt. To integrate 2.3e1−t − 0.7, let u = 1− t,

then
du

dt
= −1 which implies du = −dt. We write

s(t) =

∫ (
2.3e1−t − 0.7

)
dt =

∫
2.3e1−t dt−

∫
0.7 dt

=

∫
2.3eu (−du)︸ ︷︷ ︸

dt

−
∫

0.7 dt

=

∫
− 2.3eu du−

∫
0.7 dt

= −2.3eu − 0.7t+ C

= −2.3e1−t − 0.7t+ C
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Next, since s(0) = 0, we have

0 = −2.3e1−0 − 0.7(0) + C

= −2.3e+ C

⇒ 2.3e = C

Thus, we have
s(t) = −2.3e1−t − 0.7t+ 2.3e.

We now check for what t0 do we have v(t0) = 0. Write

0 = 2.3e1−t0 − 0.7

⇒ 0.7 = 2.3e1−t0

⇒ 0.7

2.3
= e1−t0

⇒ ln

(
0.7

2.3

)
= 1− t0

⇒ t0 = 1− ln

(
0.7

2.3

)
Finally, we compute s(t0):

s

(
1− ln

(
0.7

2.3

))
= −2.3e1−(1−ln(0.7/2.3)) − 0.7

(
1− ln

(
0.7

2.3

))
+ 2.3e

≈ 4.019

Definition 6 (Average Value of a Function over an Interval). If f(x) is
defined on an interval [a, b], then the average value of f(x) over [a, b] is

1

b− a

∫ b

a

f(x) dx.

Example 3. Find the average value of the function f(x) = 4.4xex
2

over the
interval 0 < x < 1.8. Round your answer to the nearest hundredth.

Solution: By our formula above, the average value of 4.4xex
2

over 0 < x < 1.8
is given by

1

1.8− 0

∫ 1.8

0

4.4xex
2

dx.

Let u = x2, then
du

dx
= 2x. Since we have bounds in terms of x, we convert them into

bounds in terms of u:

u(0) = (0)2 = 0

u(1.8) = (1.8)2 = 3.24
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Then, we get

1

1.8

∫ 1.8

0

4.4xex
2

dx =
1

1.8

∫ u(1.8)

u(0)

4.4xeu
(
du

2x

)
︸ ︷︷ ︸

dx

=
1

1.8

∫ 3.24

0

4.4

2
eu du

=
1

1.8

∫ 3.24

0

2.2eu du

=
2.2

1.8
eu
∣∣∣∣3.24

0

=
2.2

1.8
e3.24 − 2.2

1.8
e0

↑
1

=
2.2

1.8
e3.24 − 2.2

1.8

≈ 29.99

Example 4. A science geek brews tea at 195◦F , and observes that the tempera-
ture T (t) of the tea after t minutes is changing at the rate of

T ′(t) = −3.5e−.04t◦F/min.

What is the average temperature of the tea during the first 16 minutes after being
brewed? Round your answer to the nearest hundredth of a degree.

Solution: We want to find the average temperature from t = 0 to t = 16. We
will need to integrate T ′ and then use the initial condition, T (0) = 195 to solve for
T . Then, we find the average temperature of the tea. We were not asked to find the
average change in temperature.

First, we find T given that T (0) = 195. Let u = −.04t,
du

dt
= −.04 and write

T (t) =

∫
− 3.5e−.04t dt =

∫
− 3.5eu

(
− du
.04

)
︸ ︷︷ ︸

dt

=

∫
87.5eu du

= 87.5eu + C

= 87.5e−.04t + C

Moreover,

195 = 87.5 e−.04(0)︸ ︷︷ ︸
1

+C

= 87.5 + C
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⇒ 195− 87.5 = C

⇒ 107.5 = C

We conclude that

T (t) = 87.5e−.04t + 107.5.

Second, we find the average value of T from t = 0 to t = 16. By our formula,

1

16− 0

∫ 16

0

(
87.5e−.04t + 107.5

)
dt

=
1

16

∫ 16

0

87.5e−.04t dt+
1

16

∫ 16

0

107.5 dt

=
87.5

16

∫ 16

0

e−.04t dt+
1

16

∫ 16

0

107.5 dt

=
87.5

16

∫ u(16)

u(0)

eu
(
− du
.04

)
+

1

16

∫ 16

0

107.5 dt

= −87.5

.64

∫ u(16)

u(0)

eu du+
1

16

∫ 16

0

107.5 dt

= −87.5

.64
eu
∣∣∣∣u(16)

u(0)

+
107.5

16
t

∣∣∣∣16

0

= −87.5

.64
e−.04t

∣∣∣∣16

0

+
107.5

16
t

∣∣∣∣16

0

= −87.5

.64
e−.04t +

107.5

16
t

∣∣∣∣16

0

= −87.5

.64
e−.04(16) +

(
107.5

16

)
(16)−

[
−87.5

.64
e−.04(0) +

(
107.5

16

)
(0)

]
= −87.5

.64
e−.04(16) + 107.5 +

87.5

.64

≈ 172.13◦

2. Additional Examples

Examples.

1. Evaluate

∫ √ln 11

√
ln 2

2xex
2

dx.
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Solution: Let u = x2, then
du

dx
= 2x ⇒ du

2x
= dx. Further, evaluating

u at the bounds for x,

u(
√

ln 2) = (
√

ln 2)2 = ln 2

u(
√

ln 11) = (
√

ln 11)2 = ln 11

So, ∫ √ln 11

√
ln 2

2xex
2

dx =

∫ u(
√

ln 11)

u(
√

ln 2)

2xeu
(
du

2x

)
︸ ︷︷ ︸

dx

=

∫ ln 11

ln 2

eu du

= eu
∣∣∣∣ln 11

ln 2

= eln 11 − eln 2

= 11− 2 = 9 .

2. Find the average value of f(x) = 2x+ 1 over the interval 0 ≤ x ≤ 2.

Solution: Here, a = 0 and b = 2, so by our formula,

1

b− a

∫ b

a

f(x) dx =
1

2− 0

∫ 2

0

(2x+ 1) dx.

Thus, the average value of f over [0, 2] is

1

2

∫ 2

0

(2x+ 1) dx =
1

2
(x2 + x)

∣∣∣∣2
0

=
1

2
((2)2 + 2)− 1

2
(02 + 0)

=
1

2
(4 + 2)

= 3

3. Suppose during a hot dog eating contest you eat 3
√

2t+ 1 hot dogs/minute.
What is the average number of hot dogs you eat per minute in the first 4
minutes of the contest?

Solution: We are asked to find the average value of the function 3
√

2t+ 1
over the interval 0 ≤ t ≤ 4. By our formula, the average value is given by

1

4− 0

∫ 4

0

3
√

2t+ 1 dt.
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Observe this is a u-sub problem with bounds. Take u = 2t + 1, then

du

dt
= 2 ⇒ du

2
= dt. Moreover,

u(0) = 2(0) + 1 = 1

u(4) = 2(4) + 1 = 9

Hence,

1

4− 0

∫ 4

0

3
√

2t+ 1 dt =
1

4

∫ u(4)

u(0)

3

2

√
u du

=
1

4

∫ 9

1

3

2

√
u du

=
3

8

(
2

3

)
u3/2

∣∣∣∣9
1

=
1

4
(9)3/2 − 1

4
(1)3/2

=
27

4
− 1

4

=
26

4
=

13

2
hotdogs per minute





Lesson 3: The Natural Logarithmic Function: Integration

1. Review of Natural Log

Natural log (denoted lnx) is the function inverse of ex, that is,

ln ex = x and elnx = x.

Ex 1. ln e2 = 2 and eln(37t+4) = 37t+ 4.

Caution. ln(2e2) 6= 2 nor e3 ln(37t+4) 6= 37t+ 4.

Facts about Natural Log

• ln e = 1, ln 1 = 0 because e = e1, 1 = e0

• lnx is defined only for x in (0,∞)

– ln 0 and ln(−7) do not make sense but ln 3 is valid

– lnx may output negative values; for example,

ln

(
1

2

)
≈ −.693

Figure 2. Graph of lnx

39
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Properties of lnx

(1) a ln b = ln ba

(2) ln(ab) = ln a+ ln b

(3) ln
(a
b

)
= ln a− ln b

Ex 2.

(1) 3 ln 2 = ln 23 = ln 8

(2) ln 6 = ln(2 · 3) = ln 2 + ln 3

(3) ln 3 = ln

(
6

2

)
= ln 6− ln 2

Ex 3. The rules above do not apply in the case of addition or subtraction, that
is,

ln(3 + 2) 6= ln 3 + ln 2 nor ln(3− 2) 6= ln 3− ln 2.

Moreover, (ln(3))6 6= ln(36). You can check these using your calculator.

Recall, ∫
1

x
dx = ln |x|+ C when x 6= 0.

Note that x−1 =
1

x
is the only exception to the power rule. Further, notice the absolute

value symbols (| |). This is important because lnx only takes positive inputs and the
absolute values allow us to compute integrals like∫ −4

−6

1

x
dx = ln |x|

∣∣∣∣−4

−6

= ln | − 4| − ln | − 6| = ln 4− ln 6 = ln

(
4

6

)
︸ ︷︷ ︸

by (3)

= ln

(
2

3

)

without incident.

We may drop the absolute values if we know the input is always non-negative.
That is, ln |x2 + 1| = ln(x2 + 1) because x2 + 1 > 0 for all x. However, ln |3x + 1| 6=

ln(3x+ 1) because 3x+ 1 < 0 whenever x < −1

3
.

Ex 4. Observe that

d

dx
(ln(x)) =

1

x
.

But even more is true: for f(x) a function,

d

dx
(ln(f(x))) =

f ′(x)

f(x)
.
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More concretely,

d

dx
(ln(x2 + 2x+ 1)) =

2x+ 2

x2 + 2x+ 1
.

Remark 7. The lesson today is using u-sub with lnx.

2. Examples of u-substitution with Natural Log

Examples.

1. Evaluate

∫
x−1(ln(x))6 dx.

Solution: Since x−1 =
1

x
,∫

x−1(ln(x))6 dx =

∫ (
1

x

)
(ln(x))6 dx.

So, if we take u = lnx, then
du

dx
=

1

x
⇒ x du = dx. Write∫ (

1

x

)
(ln(x))6 dx =

∫ (
1

x

)
(u)6(x du)

=

∫
u6 du

=
1

7
u7 + C

=
1

7
(ln(x))7 + C .

2. Evaluate

∫
tanx dx.

Solution: Here, we need to observe that tan =
sinx

cosx
and so∫

tanx dx =

∫
sinx

cosx
dx.

Let u = cosx, then

du

dx
= − sinx ⇒ − du

sinx
= dx.

Therefore, ∫
tanx dx =

∫
sinx

cosx
dx

=

∫
sinx

u

(
− du

sinx

)
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=

∫
−1

u
du

= − ln |u|+ C

= − ln | cosx|+ C

= −1 · ln | cosx|+ C

= ln |(cosx)−1|+ C by (1)

= ln | secx|+ C

since (cos x)−1 =
1

cosx
= secx.

3. Evaluate

∫ 2

0

2x

1 + 2x2
dx.

Solution: Let u = 1 + 2x2, then

du

dx
= 4x ⇒ du

4x
= dx.

Moreover,

u(0) = 1 + 2(0)2 = 1

u(2) = 1 + 2(2)2 = 1 + 8 = 9

So we may write∫ 2

0

2x

1 + 2x2
dx =

∫ u(2)

u(0)

2x

u

(
du

4x

)

=

∫ 9

1

1

2u
du

=

∫ 9

1

1

2

(
1

u

)
du

=
1

2
ln |u|

∣∣∣∣9
1

=
1

2
ln(9)− 1

2
ln(1)︸︷︷︸

0

= ln(91/2)

= ln 3

4. Evaluate

∫ 27

1

1

x2/3(1 + x1/3)
dx.
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Solution: We might be tempted here to try to rewrite this as

x2/3(1 + x1/3) = x2/3 · 1 + x2/3x1/3 = x2/3 + x2/3+1/3 = x2/3 + x1

and then taking u = x2/3 + x. But then
du

dx
=

(
2

3
x−1/3 + 1

)
, which is not a

factor up to a constant in this integral (try doing this substitution on your
own to determine that you can’t eliminate the original variable).

Instead, leave the integral as it is and take u = 1 + x1/3, then

du

dx
=

1

3
x−2/3 ⇒ 3 du

x−2/3
= dx ⇒ 3x2/3 du = dx.

Thus, ∫ 27

1

1

x2/3(1 + x1/3)
dx =

∫ 27

1

1

x2/3u

(
3x2/3 du

)
=

∫ u(27)

u(1)

3

u
du

Since

u(1) = 1 + 11/3 = 1 + 1 = 2

u(27) = 1 + 271/3 = 1 + 3 = 4

we have ∫ 27

1

1

x2/3(1 + x1/3)
dx =

∫ u(27)

u(1)

3

u
du

=

∫ 4

2

3

u
du

= 3 ln |u|
∣∣∣∣4
2

= 3 ln(4)− 3 ln(2)

= 3(ln(4)− ln(2))

= 3 ln

(
4

2

)
by (3)

= 3 ln(2)

= ln(23) = ln 8 by (1)

5. Find the average value of

f(x) =
4(lnx)4

x

over the interval [1, 6e]. Round your answer to 3 decimal places.
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Solution: Take u = lnx, then
du

dx
=

1

x
⇒ x du = dx. We do have

bounds, x = 1 and x = 6e, which we change in terms of u:

u(1) = ln(1) = 0

u(6e) = ln(6e) = ln(6) + ln(e) = ln(6) + 1

Now, since we are asked for the average value, we have

1

6e− 1

∫ 6e

1

4(lnx)4

x
dx =

1

6e− 1

∫ u(6e)

u(1)

4u4

x
(x du)︸ ︷︷ ︸
dx

=
1

6e− 1

∫ ln(6)+1

0

4u4 du

=
1

6e− 1

(
4

4 + 1

)
u4+1

∣∣∣∣ln(6)+1

0

=
1

6e− 1

(
4

5

)
u5

∣∣∣∣ln(6)+1

0

=
4

5(6e− 1)
[(ln(6) + 1)5 − (0)5]

=
4(ln(6) + 1)5

5(6e− 1)

≈ 8.862

3. Additional Examples

Examples.

1. Evaluate

∫ e4

e

1

x ln(x)
dx.

Solution: Take u = ln(x), then
du

dx
=

1

x
⇒ x du = dx. Further,

u(e) = ln(e) = ln(e1) = 1

u(e4) = ln(e4) = 4

So ∫ e4

e

1

x ln(x)
dx =

∫ u(e4)

u(e)

1

xu
(x du)︸ ︷︷ ︸
dx

=

∫ u(e4)

u(e)

1

u
du
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=

∫ 4

1

1

u
du

= ln |u|
∣∣∣∣4
1

= ln(4)− ln(1)

= ln(4)− 0 = ln(4)

2. Suppose a factory produces sponges at rate of

s′(t) =
3t2 + 2

t3 + 2t+ 1
thousand sponges/day.

Find the total amount of sponges created in the factory’s first week (which
is 7 days) of production. Round your answer to the nearest hundred.

Solution: The number of sponges (in thousands) created in the first
week is given by ∫ 7

0

3t2 + 2

t3 + 2t+ 1
dt.

Let u = t3 + 2t+ 1, then
du

dt
= (3t2 + 2) ⇒ du

3t2 + 2
= dt. Write∫ 7

0

3t2 + 2

t3 + 2t+ 1
dt =

∫ u(7)

u(0)

3t2 + 2

t3 + 2t+ 1

(
du

3t2 + 2

)
︸ ︷︷ ︸

dt

=

∫ u(7)

u(0)

1

u
du

= ln |u|
∣∣∣∣u(7)

u(0)

= ln |t3 + 2t+ 1|
∣∣∣∣7
0

= ln((73) + 2(7) + 1)− ln((03) + 2(0) + 1)

= ln((73) + 15)− ln 1
↑
0

= ln(358) ≈ 5.9 thousand sponges

3. Find the area bounded by

y =
9 sinx

3 + cos x
, y = 0, x =

π

7
, x =

6π

7
.

Round your answer to 3 decimal places.



46 LESSON 3: THE NATURAL LOGARITHMIC FUNCTION: INTEGRATION

Solution: We are asked to integrate

∫ 6π/7

π/7

9 sinx

3 + cos x
dx.

Take u = 3 + cosx, then
du

dx
= − sinx. Here, we won’t change the bounds

and instead write∫ 6π/7

π/7

9 sinx

3 + cos x
dx =

∫ u(6π/7)

u(π/7)

9 sinx

u

(
− du

sinx

)
︸ ︷︷ ︸

dx

=

∫ u(6π/7)

u(π/7)

− 9

u
du

= −9 ln |u|
∣∣∣∣u(6π/7)

u(π/7)

= −9 ln |3 + cos x|
∣∣∣∣6π/7
π/7

= −9 ln

∣∣∣∣3 + cos

(
6π

7

)∣∣∣∣− [−9 ln
∣∣∣3 + cos

(π
7

)∣∣∣]
≈ 5.578

4. Evaluate

∫
11 cot

(x
5

)
dx.

Solution: We want to observe that

cot
(x

5

)
=

cos
(x

5

)
sin
(x

5

) .
We need to determine whether to take

u = cos
(x

5

)
or u = sin

(x
5

)
To choose our u, we must completely eliminate the original variable.

Here, we should take u = sin
(x

5

)
. Then

du

dx
=

1

5
cos
(x

5

)
⇒ dx =

5 du

cos
(x

5

) .
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Next, we write

∫
11 cot

(x
5

)
dx =

∫
11

cos
(x

5

)
sin
(x

5

) dx
=

∫
11

cos
(x

5

)
u

 5 du

cos
(x

5

)


︸ ︷︷ ︸
dx

=

∫
55

u
du

= 55 ln |u|+ C

= 55 ln
∣∣∣sin(x

5

)∣∣∣+ C

5. Suppose a population of penguins changes at a rate of

P ′(t) =
20et

ln(2)(1 + et)
penguins/year

and that the current population is 2000 penguins.

(a) What is the penguin population after 10 years? Round your answer to
the nearest penguin.

Solution: Since P ′(t) is the change in population, we need to find
P (t) (which is the number of penguins at year t) and then compute
P (10).

Write ∫
P ′(t) dt =

∫
20et

ln(2)(1 + et)
dt.

Let u = 1 + et, then
du

dt
= et ⇒ du

et
= dt which means

∫
20et

ln(2)(1 + et)
dt =

∫
20

ln(2)

(
et

u

) (
du

et

)
︸ ︷︷ ︸

dt

=
20

ln(2)

∫
1

u
du

=
20

ln(2)
ln |u|+ C

=
20

ln(2)
ln |1 + et|+ C.
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This lists all the possible P (t), but we need to find the specific P (t)
that satisfies P (0) = 2000. Write

P (0) = 2000

⇒ 20

ln(2)
ln |1 + e0|+ C = P (0) = 2000

⇒ 20

ln(2)
ln(1 + 1) + C = 2000

⇒ 20 ln(2)

ln(2)
+ C = 2000

⇒ 20 + C = 2000

⇒ C = 1980

Thus,

P (t) =
20

ln(2)
ln(1 + et) + 1980.

To answer the question, we compute

P (10) =
20

ln(2)
ln(1 + e10) + 1980 ≈ 2,269 penguins .

(b) What is the average change in the penguin population from now to 20
years from now? Round your answer to the nearest penguin.

Solution: We are asked to find the average change in the penguin
population, which is P ′(t). Hence, by our formula for function averages,
we need to compute

1

20− 0

∫ 20

0

P ′(t) dt.

By the FTC,

1

20− 0

∫ 20

0

P ′(t) dt =
1

20
[P (20)− P (0)]

=
20

20 ln(2)

[
ln(1 + e20)− ln(1 + e0)

]
≈ 28 penguins



Lesson 4: Integration by Parts (I)

1. Integration by Parts

Some functions are the result of differentiation via the product rule. Integrating
these functions are tackled by an integration method called integration by parts.
The key is the following equation:

(3)

∫
u dv = uv −

∫
v du

MEMORIZE this formula.

Ex 1. Suppose we want to evaluate∫
xex dx.

Here, u-substitution fails to produce anything useful. Instead, we need to use
integration by parts.

To use integration by parts, we apply equation (3) which means we must identify
our u, du, v, dv. The integrand is u · dv, which means once u is chosen, everything
else is dv. Then, we find du by differentiating u and we find v by integrating dv.

u = dv = everything leftover

du = derivative of u v =
∫
dv

For the example give above, we should take u = x. This means that everything
leftover in the integral (ex dx) is our dv. To get our du and v, we differentiate and
integrate respectively:

u = x dv = ex dx

du = dx v =
∫
ex dx︸ ︷︷ ︸
dv

= ex

Note 8. In this context, whenever we integrate dv, we always assume the constant
is 0.

Now that we have each part of equation (3), we just plug in our functions:∫
u dv = uv −

∫
v du∫

x︸︷︷︸
u

ex dx︸ ︷︷ ︸
dv

= x︸︷︷︸
u

ex︸︷︷︸
v

−
∫

ex︸︷︷︸
v

dx︸︷︷︸
du

.

49
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Thus, our integral becomes∫
xex dx︸ ︷︷ ︸

original
integral

= xex −
∫
ex dx = xex − ex + C

Note 9. We add a single C at the end of the integration by parts process.

CHECK:
d

dx
(xex − ex + C) = xex

Integration by parts requires attention to detail and is a difficult method to apply,
but it is very useful. The trickiest part of integration by parts is determining the
correct choice for u. To choose an appropriate u, we apply the following:

L - Logarithms like lnx, ln(x3 + 1), etc

I - Inverse trig functions (not for this class)

A - Algebraic functions like x, x3 + x2 + 7, polynomials (NO ROOTS)

T - Trig functions like cos x, tanx, etc

E - Exponential functions like ex, 2x, etc

We use this list as follows:

1. If lnx appears in the integral, then use u = lnx.

2. If no logarithm appears, then we let u be whatever inverse trig function is
present.

3. If neither a logarithm nor an inverse trig function are present, we take u to
be an algebraic function.

4. If there is no logarithm, inverse trig, nor algebraic function in the integral,
let u be a trig function.

5. If logarithms, inverse trig functions, algebraic functions, and trig functions
are all absent, choose u to be an exponential function.

Ex 2. To evaluate

∫
(3x2 + x − 1)ex dx, we take u = 3x2 + x − 1 and get the

following table:

u = 3x2 + x− 1 dv = ex dx

du = (6x+ 1) dx v =
∫
ex dx = ex

Note 10. The above is not really a set of hard and fast rules but rather a rule of
thumb for choosing u. For this class, however, LIATE should be sufficient.

Examples.

1. Evaluate

∫
x lnx dx
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Solution: By LIATE, we take u = lnx. Then we get the following table:

u = lnx dv = x dx

du =
1

x
dx v =

∫
x dx =

1

2
x2

We apply equation (3),∫
x lnx dx = lnx︸︷︷︸

u

(
1

2
x2

)
︸ ︷︷ ︸

v

−
∫ (

1

2
x2

)
︸ ︷︷ ︸

v

(
1

x
dx

)
︸ ︷︷ ︸

du

=
1

2
x2 lnx− 1

2

∫
x2

(
1

x

)
dx

=
1

2
x2 lnx− 1

2

∫
x dx

=
1

2
x2 lnx− 1

4
x2 + C

2. Find

∫ π/3

0

x cosx dx

Solution: This is a definite integral but we still apply the same method.
By LIATE, u = x. So

u = x dv = cosx dx

du = dx v =
∫

cosx dx = sinx

By equation (3), we write∫ π/3

0

x cosx dx = x︸︷︷︸
u

sinx︸︷︷︸
v

∣∣∣∣π/3
0

−
∫ π/3

0

sinx︸︷︷︸
v

dx︸︷︷︸
du

= x sinx

∣∣∣∣π/3
0

−
∫ π/3

0

sinx dx

= x sinx

∣∣∣∣π/3
0

− (− cosx)

∣∣∣∣π/3
0

= x sinx

∣∣∣∣π/3
0

+ cosx

∣∣∣∣π/3
0

= x sinx+ cosx

∣∣∣∣π/3
0

=
π

3
sin
(π

3

)
︸ ︷︷ ︸
√

3/2

+ cos
(π

3

)
︸ ︷︷ ︸

1/2

−[0 sin 0︸ ︷︷ ︸
0

+ cos 0︸︷︷︸
1

]
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=
π

3

(√
3

2

)
+

1

2
− 1 =

√
3π

6
− 1

2

For definite integrals, we have the following integration by parts formula:

(4)

∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du

3. Evaluate

∫ e

1

x ln(x9) dx

Solution: By LIATE, u = ln(x9). Then

d

dx
ln(x9) =

d

dx
(x9)

x9
=

9x8

x9
=

9

x

Thus,

u = ln(x9) dv = x dx

du =
9

x
dx v =

∫
x dx =

1

2
x2

We write∫ e

1

x ln(x9) dx = ln(x9)︸ ︷︷ ︸
u

(
1

2
x2

)
︸ ︷︷ ︸

v

∣∣∣∣e
1

−
∫ e

1

(
1

2
x2

)
︸ ︷︷ ︸

v

(
9

x
dx

)
︸ ︷︷ ︸

du

=
1

2
x2 ln(x9)

∣∣∣∣e
1

− 9

2

∫ e

1

x2

(
1

x

)
dx

=
1

2
x2 ln(x9)

∣∣∣∣e
1

− 9

2

∫ e

1

x dx

=
1

2
x2 ln(x9)

∣∣∣∣e
1

− 9

2

(
1

2
x2

) ∣∣∣∣e
1

=
1

2
x2 ln(x9)− 9

4
x2

∣∣∣∣e
1

=
1

2
e2 ln(e9)︸ ︷︷ ︸

9

−9

4
e2 −

[
1

2
(1)2 ln(19)︸ ︷︷ ︸

0

− 9

4
(1)2

]

=
9

2
e2 − 9

4
e2 +

9

4

=
18

4
e2 − 9

4
e2 +

9

4
=

9

4
e2 +

9

4
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4. Find

∫
x3

√
1 + x2

dx

Solution: Sometimes you need to be very clever in how you choose your
u even when following LIATE.

If you take u = x3, then dv =
1√

1 + x2
dx. But we don’t know how

to integrate this dv. Instead, take u = x2 which leaves dv =
x√

1 + x2
dx.

With this choice of dv, we can integrate:∫
x√

1 + x2
dx

u=1+x2

du=2x dx=

∫
1

2
√
u
du

=

∫
1

2
u−1/2 du

=
1

2

(
1

(−1/2) + 1

)
u−1/2+1

=
1

2

(
1

1/2

)
u1/2

=
√
u =
√

1 + x2.

So we write

u = x2 dv =
x√

1 + x2
dx

du = 2x dx v =
√

1 + x2

Now, we can apply equation (3).∫
x3

√
1 + x2

dx = (x2)︸︷︷︸
u

(
√

1 + x2)︸ ︷︷ ︸
v

−
∫

(
√

1 + x2)︸ ︷︷ ︸
v

(2x dx)︸ ︷︷ ︸
du

= x2
√

1 + x2 −
∫

2x
√

1 + x2 dx︸ ︷︷ ︸
�

.

Where (�) is, again, a u-substitution problem.

Putting this all together,∫
x3

√
1 + x2

dx = x2
√

1 + x2 −
∫

2x
√

1 + x2 dx︸ ︷︷ ︸
�

= x2
√

1 + x2 − 2

3
(1 + x2)3/2 + C

�
∫
2x
√
1 + x2 dx

u=1+x2

u=2x dx=

∫ √
u du =

2

3
u3/2 =

2

3
(1 + x2)3/2
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Note 11. To use LIATE effectively, choose (1) a u that gets “simpler”
when you differentiate and (2) a dv which you know how to integrate.

Remark 12. Observe that we can also integrate

∫
x3

√
1 + x2

dx by taking

u = 1 + x2 then observing
du

dx
= 2x and x2 = u− 1. Next, write∫

x3

√
1 + x2

dx =

∫
x2

√
1 + x2

· x dx

=

∫
u− 1√
u
· x
(
du

2x

)
︸ ︷︷ ︸

dx

=

∫
u− 1

2
√
u
du

and proceed from the integration from there.

2. u-Substitution vs. Integration by Parts

There are many cases where functions can be integrated by either u-substitution or
integration by parts; however, there is usually only one method that will work. Below
is a list of different integrals under the method by which they can be integrated. This
list is by no means exhaustive but should help compare and contrast when to use
what method.

u-Substitution Integration by Parts∫
xex

2

dx

∫
xex dx∫

ln(x)

x
dx

∫
x lnx dx∫

(ln(x))4

x
dx

∫
lnx

x4
dx∫

sinx(cosx)2 dx

∫
x cosx dx

As you go through your homework, add examples to this list for easy review later.

3. Why Integration by Parts Works

Suppose we have functions f(x) and g(x). Then, by the product rule,

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x).

If we integrate both sides, then∫
[f(x)g(x)]′ dx =

∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx.
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But integration undoes differentiation, so∫
[f(x)g(x)]′ dx = f(x)g(x).

Therefore, ∫
[f(x)g(x)]′ dx︸ ︷︷ ︸

f(x)g(x)

=

∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx

⇒ f(x)g(x) =

∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx

Now, subtract

∫
f ′(x)g(x) dx from both sides,

f(x)g(x)−
∫
f(x)g′(x) dx =

∫
f ′(x)g(x) dx.

Finally, let

u = f(x) dv = g′(x) dx

du = f ′(x) dx v =
∫
g′(x) dx = g(x)

to get ∫
f(x)︸︷︷︸
u

g′(x) dx︸ ︷︷ ︸
dv

= f(x)︸︷︷︸
u

g(x)︸︷︷︸
v

−
∫
g(x)︸︷︷︸
v

f ′(x) dx︸ ︷︷ ︸
du

.

4. Additional Examples

Examples.

1. Evaluate

∫ 10

7

(t− 2)e3−t dt.

Solution: By LIATE, take u = t− 2. Our table is

u = t− 2 dv = e3−t dt

du = dt v =
∫
e3−t dt = −e3−t

Hence,∫ 10

7

(t− 2)e3−t dt = (t− 2)︸ ︷︷ ︸
u

(−e3−t)︸ ︷︷ ︸
v

∣∣∣∣10

7

−
∫ 10

7

(−e3−t)︸ ︷︷ ︸
v

dt
↑
du

= −(t− 2)e3−t
∣∣∣∣10

7

+

∫ 10

7

e3−t dt
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= −(t− 2)e3−t
∣∣∣∣10

7

− e3−t
∣∣∣∣10

7

= −(t− 2)e3−t − e3−t
∣∣∣∣10

7

= −(10− 2)e3−10 − e3−10 −
[
−(7− 2)e3−7 − e3−7

]
= −8e−7 − e−7 + 5e−4 + e−4

= −9e−7 + 6e−4

2. Evaluate

∫ 11.1

9.1

x(x− 10.1)5 dx.

Solution: Although this is in the integration by parts section, this prob-

lem is easier tackled by u-substitution. Let u = x − 10.1 where
du

dx
= 1,

x = u+ 10.1. We do have bounds, which we change:

u(9.1) = 9.1− 10.1 = −1

u(11.1) = 11.1− 10.1 = 1

Next, we write∫ 11.1

9.1

x(x− 10.1)5 dx =

∫ u(11.1)

u(9.1)

(u+ 10.1)u5 du
↑
dx

=

∫ 1

−1

(u6 + 10.1u5) du

=
1

6 + 1
u6+1 +

10.1

5 + 1
u5+1

∣∣∣∣1
−1

=
1

7
u7 +

10.1

6
u6

∣∣∣∣1
−1

=
1

7
(1)7 +

10.1

6
(1)6 −

[
1

7
(−1)7 +

10.1

6
(−1)6

]
=

1

7
+

10.1

6
+

1

7
− 10.1

6
=

2

7

3. Evaluate

∫
20x(ln(6x))2 dx.

Solution: This is an integration by parts problem. By LIATE, we take
u = (ln(6x))2. By the chain rule, du is given by

du =
6

6x
(2 ln(6x)) dx =

2 ln(6x)

x
dx.



4. ADDITIONAL EXAMPLES 57

Our table is then

u = (ln(6x))2 dv = 20x dx

du =
2 ln(6x)

x
dx v =

∫
20x dx = 10x2

We write∫
20x(ln(6x))2 dx = (ln(6x))2︸ ︷︷ ︸

u

(10x2)︸ ︷︷ ︸
v

−
∫

10x2︸︷︷︸
v

(
2 ln(6x)

x

)
dx︸ ︷︷ ︸

du

= 10x2(ln(6x))2 −
∫

20x ln(6x) dx︸ ︷︷ ︸
��

Observe that (��) is another integration by parts problem. Let u1 = ln(6x),

then du1 =
6

6x
dx =

1

x
dx. We make another table:

u1 = ln(6x) dv1 = 20x dx

du1 =
1

x
dx v1 =

∫
20x dx = 10x2

Hence,

(��) =

∫
20x ln(6x) dx

= ln(6x)︸ ︷︷ ︸
u1

(10x2)︸ ︷︷ ︸
v1

−
∫

10x2︸︷︷︸
v1

(
1

x

)
︸ ︷︷ ︸
du1

= 10x2 ln(6x)−
∫

10x dx

= 10x2 ln(6x)− 5x2 + C

Combining this with our work above, we get∫
20x(ln(6x))2 dx = 10x2(ln(6x))2 −

∫
20x ln(6x) dx︸ ︷︷ ︸

��

= 10x2(ln(6x))2 − (10x2 ln(6x)− 5x2) + C

= 10x2(ln(6x))2 − 10x2 ln(6x) + 5x2 + C

4. Evaluate

∫ e4

1

14 lnx

4x2
dx.
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Solution: By LIATE, take u = lnx. Then dv =
14

4x2
dx =

7

2x2
which

means

v =

∫
7

2x2
dx

=

∫
7

2
x−2 dx

=
7

2

(
1

−2 + 1

)
x−2+1

=
7

2

(
1

−1

)
x−1

= −7

2
x−1

Our table is

u = lnx dv =
14

4x2
dx

du =
1

x
= x−1 v = −7

2
x−1

Hence,∫ e4

1

14 lnx

4x2
dx = lnx︸︷︷︸

u

(
−7

2
x−1

)
︸ ︷︷ ︸

v

∣∣∣∣e4
1

−
∫ e4

1

(
−7

2
x−1

)
︸ ︷︷ ︸

v

(
x−1 dx

)︸ ︷︷ ︸
du

= −7 lnx

2x

∣∣∣∣e4
1

+

∫ e4

1

7

2
x−2 dx

= −7 lnx

2x

∣∣∣∣e4
1

+
7

2

(
1

−2 + 1

)
x−2+1

∣∣∣∣e4
1

= −7 lnx

2x

∣∣∣∣e4
1

+
7

2

(
1

−1

)
x−1

∣∣∣∣e4
1

= −7 lnx

2x

∣∣∣∣e4
1

− 7

2x

∣∣∣∣e4
1

= −7 lnx

2x
− 7

2x

∣∣∣∣e4
1

= −7 ln e4

2e4
− 7

2e4
−
[
−7 ln 1

2(1)
− 7

2(1)

]
= −7(4)

2e4
− 7

2e4
+

7

2
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= − 28

2e4
− 7

2e4
+

7

2
= − 35

2e4
+

7

2

5. Evaluate

∫
z2 + 1

ez
dz.

Solution: First, we rewrite the integral a little. Since
1

ez
= e−z, we can

write ∫
z2 + 1

ez
dz =

∫
(z2 + 1)e−z dz

=

∫
(z2e−z + e−z) dz

=

∫
z2e−z dz︸ ︷︷ ︸

(?)

+

∫
e−z dz.

We see that
∫
e−z dz can be done via u-substitution but it is not imme-

diately clear what

∫
z2e−z dz︸ ︷︷ ︸

(?)

is. We turn our attention to (?).

Solving (?): This is an integration by parts problem. By LIATE, we take

u = z2 dv = e−z dz

du = 2z dz v = −e−z

Then we simply plug this into equation (3):

(?) =

∫
(z2)︸︷︷︸
u

(e−z dz)︸ ︷︷ ︸
dv

= (z2)︸︷︷︸
u

(−e−z)︸ ︷︷ ︸
v

−
∫

(−e−z)︸ ︷︷ ︸
v

(2z dz)︸ ︷︷ ︸
du

= −z2e−z − (−2)

∫
ze−z dz

= −z2e−z + 2

∫
ze−z dz︸ ︷︷ ︸
(??)

.

Because
∫
ze−z dz does not have an obvious antiderivative and u-substitution

fails, we run into another situation wherein we need to use integration by
parts. We focus on finding (??).
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Solving (??): By LIATE, we take

u1 = z dv1 = e−z dz

du1 = dx v1 = −e−z

Then by equation (3):

(??) =

∫
(z)︸︷︷︸
u1

(e−z)︸ ︷︷ ︸
dv1

= (z)︸︷︷︸
u1

(−e−z)︸ ︷︷ ︸
v1

−
∫

(−e−z)︸ ︷︷ ︸
v1

(dx)︸︷︷︸
du1

= −ze−z −
∫
−e−z dz

= −ze−z − (−1)

∫
e−z dz

= −ze−z +

∫
e−z dz

= −ze−z − e−z.

Finally, we put it all back together.

Putting it all back together: We were originally given the integral

∫
z2 + 1

ez
dz.

By our work, we can now write∫
z2 + 1

ez
dz =

∫
z2e−z dz︸ ︷︷ ︸

(?)

+

∫
e−z dz

= −z2e−z + 2

∫
ze−z dz︸ ︷︷ ︸
(??)

+

∫
e−z dz

= −z2e−z + 2(−ze−z − e−z) +

∫
e−z dz

= −z2e−z − 2ze−z − 2e−z − e−z + C

= −z2e−z − 2ze−z − 3e−z + C
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1. Solutions to In-Class Examples

Example 1. Suppose a turtle is moving at a speed of 18(t + 1)3 ln(t + 1)1/9

miles/hour. How far does the turtle travel in half an hour? Round your answer to
the nearest thousandth.

Solution: Here, we want to integrate the speed function 18(t + 1)3 ln(t + 1)1/9

because we need to know the distance accumulated by the turtle between 0 and
1

2
hours. This integral is ∫ 1/2

0

18(t+ 1)3 ln(t+ 1)1/9 dt.

u-substitution will not work here and so we need to use integration by parts. However,
we should first simplify our integral. By our rules about lnx,

ln(t+ 1)1/9 =
1

9
ln(t+ 1).

We write∫ 1/2

0

18(t+ 1)3 ln(t+ 1)1/9 dt =

∫ 1/2

0

18

9
(t+ 1)3 ln(t+ 1) dt =

∫ 1/2

0

2(t+ 1)3 ln(t+ 1) dt.

Next, by LIATE, we take u = ln(t + 1), which means dv = 2(t + 1)3 dt. Observe
that

(?)

∫
(t+ 1)3 dt

w=t+1
dw=dt=

∫
w3 dt =

1

4
w4 =

1

4
(t+ 1)4.

Hence, integrating dv,

(??)

∫
2(t+ 1)3 dt = 2

∫
(t+ 1)3 dt = 2

(
1

4

)
(t+ 1)4 =

1

2
(t+ 1)4.

Thus, our table becomes

u = ln(t+ 1) dv = 2(t+ 1)3 dt

du =
1

t+ 1
dt v

(??)
=

1

2
(t+ 1)4

So we write
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∫ 1/2

0

2(t+ 1)3 ln(t+ 1) dt

= ln(t+ 1)︸ ︷︷ ︸
u

(
1

2
(t+ 1)4

)
︸ ︷︷ ︸

v

∣∣∣∣1/2
0

−
∫ 1/2

0

1

2
(t+ 1)4︸ ︷︷ ︸

v

(
1

t+ 1

)
dt︸ ︷︷ ︸

du

=
1

2
(t+ 1)4 ln(t+ 1)

∣∣∣∣1/2
0

− 1

2

∫ 1/2

0

(t+ 1)3 dt

=
1

2
(t+ 1)4 ln(t+ 1)

∣∣∣∣1/2
0

− 1

2

(
1

4
(t+ 1)4

)
︸ ︷︷ ︸

by (?)

∣∣∣∣1/2
0

=
1

2
(t+ 1)4 ln(t+ 1)− 1

8
(t+ 1)4

∣∣∣∣1/2
0

=
1

2

(
1

2
+ 1

)4

ln

(
1

2
+ 1

)
− 1

8

(
1

2
+ 1

)4

−
(

1

2
(0 + 1)4 ln(0 + 1)− 1

8
(0 + 1)4

)

=
1

2

(
3

2

)4

ln

(
3

2

)
− 1

8

(
3

2

)4

−
(

1

2
ln(1)− 1

8

)
=

34

25
ln

(
3

2

)
− 34

27
+

1

8

≈ .519 miles

Example 2. A factory produces pollution at a rate of
14 ln(7t+ 1)

(7t+ 1)3
tons/week.

How much pollution does the factory produce in a day? Round your answer to the
nearest hundredth.

Solution: Our function measures output in terms of weeks but we are asked
about the pollution produced in a day. Hence, the integral we must compute is∫ 1/7

0

14 ln(7t+ 1)

(7t+ 1)3
dt.

However, this form looks somewhat unwieldy, so we introduce a small cosmetic

change to our integral. Set x = 7t+ 1, then
dx

dt
= 7 ⇒ dx

7
= dt with

x(0) = 7(0) + 1 = 1

x(1/7) = 7(1/7) + 1 = 2

Thus, ∫ 1/7

0

14 ln(7t+ 1)

(7t+ 1)3
dt =

∫ 2

1

14 ln(x)

x3

(
dx

7

)
=

∫ 2

1

2 ln(x)

x3
dx.
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So now, we need only compute the far right integral and we have solved the problem.

Our integral cannot be computed using u-substitution, so we apply integration by

parts. By LIATE, we take u = ln(x), and so dv =
2

x3
dx. Since

v =

∫
2

x3
dt =

∫
2x−3 dt =

2

−3 + 1
x−3+1 =

2

−2
x−2 = −x−2 = − 1

x2
,

our table becomes

u = ln(x) dv =
2

x3
dx

du =
1

x
dx v = − 1

x2

Therefore, we write∫ 2

1

2 ln(x)

x3
dx = ln(x)︸ ︷︷ ︸

u

(
− 1

x2

)
︸ ︷︷ ︸

v

∣∣∣∣2
1

−
∫ 2

1

(
− 1

x2

)
︸ ︷︷ ︸

v

(
1

x
dx

)
︸ ︷︷ ︸

du

= − ln(x)

x2

∣∣∣∣2
1

+

∫ 2

1

1

x3
dx

= − ln(x)

x2

∣∣∣∣2
1

− 1

2x2

∣∣∣∣2
1

= − ln(x)

x2
− 1

2x2

∣∣∣∣2
1

= −2 ln(x) + 1

2x2

∣∣∣∣2
1

= −2 ln(2) + 1

2(22)
−
(
−2 ln(1) + 1

2(12)

)
= −2 ln 2 + 1

2(22)
+

2 ln(1) + 1

2(12)

= −1

8
(2 ln(2) + 1) +

1

2

= −1

4
ln(2)− 1

8
+

1

2

= −1

4
ln(2)− 1

8
+

4

8

=
3

8
− 1

4
ln(2)

≈ .2 tons
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Example 3. Suppose the number of Emerald Ash Borers in Indiana (an invasive
species) is increasing at a rate of

E(t) = 30t2et members/month

where t is the number of months from the start of 2011. (t = 0 corresponds to Jan.
1 and, for our purposes, we assume each month is of equal duration.) What is the
average population per month of Emerald Ash Borers in Indiana between March and
May of 2011? Round your answer to the nearest integer.

Solution: Because we are asked to find the average number of Emerald Ash
Borers between March and May of 2011, we will need to set up a definite integral.
First, let’s determine our bounds. Since t = 0 is Jan. 1, consider

0 ≤ t < 1,︸ ︷︷ ︸
Jan

1 ≤ t < 2,︸ ︷︷ ︸
Feb

2 ≤ t < 3,︸ ︷︷ ︸
March

3 ≤ t < 4︸ ︷︷ ︸
April

4 ≤ t < 5︸ ︷︷ ︸
May

Hence, we ought to integrate from t = 2 to t = 5. Our formula for average value is
then given by

1

5− 2

∫ 5

2

30t2et dt.

Second, we integrate. Simplifying, our integral is

1

5− 2

∫ 5

2

30t2et dx =
1

3

∫ 5

2

30t2et dx =

∫ 5

2

10t2et dt.

This is an integration by parts integral where, by LIATE, we take u = 10t2 and thus
dv = et dt. We write

u = 10t2 dv = et dt

du = 20t v = et

Continuing, we have∫ 5

2

10t2et dt = 10t2︸︷︷︸
u

(et)︸︷︷︸
v

∣∣∣∣5
2

−
∫ 5

2

(et)︸︷︷︸
v

(20t dt)︸ ︷︷ ︸
du

= 10t2et
∣∣∣∣5
2

−
∫ 5

2

20tet dt︸ ︷︷ ︸
(∗)

which involves another integration by parts problem.

We find (∗). Let u1 = 20t and dv1 = et dt. Our table is then

u1 = 20t dv1 = et dt

du1 = 20 dt v1 = et

Hence,
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∫ 5

2

20tet dt = 20t︸︷︷︸
u1

et︸︷︷︸
v1

∣∣∣∣5
2

−
∫ 5

2

et︸︷︷︸
v1

(20 dt)︸ ︷︷ ︸
du1

= 20tet
∣∣∣∣5
2

−
∫ 5

2

20et dt

= 20tet
∣∣∣∣5
2

− 20et
∣∣∣∣5
2

= 20tet − 20et
∣∣∣∣5
2

Returning to our original problem, we have∫ 5

2

10t2et dt = 10t2et
∣∣∣∣5
2

−
∫ 5

2

20tet dt︸ ︷︷ ︸
(∗)

= 10t2et
∣∣∣∣5
2

−

(
20tet − 20et

∣∣∣∣5
2

)

= 10t2et − 20tet + 20et
∣∣∣∣5
2

= 10(5)2et − 20(5)e5 + 20e5 −
[
10(2)2e2 − 20(2)e2 + 20e2

]
= 170e5 − 20e2

≈ 25, 082 Emerald Ash Borers

2. Additional Examples

Examples.

1. Find the area under the curve of f(x) = x(x−3)6 over the interval 0 ≤ x ≤ 3.

Solution: The area under a curve is given by a definite integral. In this
case, the definite integral is∫ 3

0

x(x− 3)6 dx.

This can be computed using integration by parts, but it is easier to use
u-substitution.

Take u = x− 3, then du = dx. Note u = x− 3 ⇒ u+ 3 = x and so we
can write ∫ 3

0

x(x− 3)6 dx =

∫ u(3)

u(0)

(u+ 3)u6 du.
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Since u = x− 3, evaluating at x = 0 and x = 3, we find

u(0) = 0− 3 = −3

u(3) = 3− 3 = 0

Thus, ∫ u(3)

u(0)

(u+ 3)u6 du =

∫ 0

−3

(u+ 3)u6 du.

Finally, we evaluate:∫ 0

−3

(u+ 3)u6 du =

∫ 0

−3

(u7 + 3u6) du

=
1

8
u8 +

3

7
u7

∣∣∣∣0
−3

=
1

8
(0)8 +

3

7
(0)7 −

(
1

8
(−3)8 +

3

7
(−3)7

)
= −

(
6561

8
− 6561

7

)
= 6561

(
−1

8
+

1

7

)
= 6561

(
− 7

56
+

8

56

)
= 6561

(
1

56

)
=

6561

56

2. Evaluate

∫
6x2 cos(−3x) dx.

Solution: This is another integral wherein we need to apply integration
by parts twice.

First, we let u = 6x2, then

u = 6x2 dv = cos(−3x) dx

du = 12x dx v =
∫

cos(−3x) dx = −1

3
sin(−3x)

We write∫
6x2 cos(−3x) dx = 6x2︸︷︷︸

u

(
−1

3
sin(−3x)

)
︸ ︷︷ ︸

v

−
∫
−1

3
sin(−3x)︸ ︷︷ ︸
v

(12x dx)︸ ︷︷ ︸
du
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= −2x2 sin(−3x) +

∫
4x sin(−3x) dx︸ ︷︷ ︸

(∗∗)

We need to determine (∗∗), which is a second integration by parts problem.

Next, we let u1 = 4x, then

u1 = 4x dv1 = sin(−3x) dx

du1 = 4 dx v1 =
∫

sin(−3x) dx =
1

3
cos(−3x)

Thus,∫
4x sin(−3x) dx = 4x︸︷︷︸

u1

(
1

3
cos(−3x)

)
︸ ︷︷ ︸

v1

−
∫
−1

3
cos(−3x)︸ ︷︷ ︸
v1

(4 dx)︸ ︷︷ ︸
du1

= −4

3
x cos(−3x) +

∫
4

3
cos(−3x) dx

= −4

3
x cos(−3x) +

4

3

(
1

3

)
sin(−3x) + C

= −4

3
x cos(−3x) +

4

9
sin(−3x) + C

Putting this together, we conclude∫
6x2 cos(−3x) dx = −2x2 sin(−3x) +

∫
4x sin(−3x) dx︸ ︷︷ ︸

(∗∗)

= −2x2 sin(−3x) +
4

3
x cos(−3x) +

4

9
sin(−3x) + C

3. Suppose the probability of a gold necklace having a gold purity of 100x
percent (so 0 ≤ x ≤ 1) is given by

P (x) =
9e3

e3 − 4
xe−3x.

Find the probability that a gold necklace has a purity of at least 75%. Round
your answer to the nearest percent.

Solution: We want our gold necklace to have a purity of at least 75%.
Hence,

75 ≤ 100x ≤ 100 ⇒ .75 ≤ x ≤ 1.

Thus, the question comes down to computing∫ 1

.75

9e3

e3 − 4
xe−3x dx =

9e3

e3 − 4

∫ 1

.75

xe−3x dx.
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For the moment, let’s focus on the integral and forget about the constant
out front. We want to solve∫ 1

.75

xe−3x dx.

This is an integration by parts problem, which means it comes down to
choosing the correct u and dv. By LIATE, let u = x and dv = e−3x dx.
Integrating dv, we get

(∗ ∗ ∗) v =

∫
dv =

∫
e−3x dx

w=−3x
dw=−3 dx

=

∫
−1

3
ew du = −1

3
ew = −1

3
e−3x.

So our table becomes

u = x dv = e−3x dx

du = dx v = −1

3
e−3x

We write∫ 1

.75

xe−3x dx = x︸︷︷︸
u

(
−1

3
e−3x

)
︸ ︷︷ ︸

v

∣∣∣∣1
.75

−
∫ 1

.75

(
−1

3
e−3x

)
︸ ︷︷ ︸

v

dx
↑
du

= −1

3
xe−3x

∣∣∣∣1
.75

+
1

3

∫ 1

.75

e−3x dx︸ ︷︷ ︸
(∗∗∗)

= −1

3
xe−3x

∣∣∣∣1
.75

− 1

9
e−3x

∣∣∣∣1
.75

= −1

3
xe−3x − 1

9
e−3x

∣∣∣∣1
.75

= −1

3
e−3 − 1

9
e−3 −

[
−1

3
(.75)e−3(.75) − 1

9
e−3(.75)

]
=

1

4
e−3(.75) +

1

9
e−3(.75) − 1

3
e−3 − 1

9
e−3

=

(
1

4
+

1

9

)
e−3(.75) −

(
1

3
+

1

9

)
e−3

Hence,

9e3

e3 − 4

∫ 1

.75

xe−3x dx =
9e3

e3 − 4

[(
1

4
+

1

9

)
e−3(.75) −

(
1

3
+

1

9

)
e−3

]
≈ .18

So the probability is 18% .
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4. Suppose a certain plant is growing at a rate of tet inches per day t days after
it is planted. What is the height of the plant at the beginning of the third
day (assuming it is planted as a seed on the first day)?

Solution: Because of how we are measuring t, we make the observation

0 ≤ t < 1︸ ︷︷ ︸
Day 1

, 1 ≤ t < 2︸ ︷︷ ︸
Day 2

, 2 ≤ t < 3︸ ︷︷ ︸
Day 3

.

Let H(t) be the height of the plant t days after it is planted. We know
that H(0) = 0 (since it was planted as a seed) and we want to find H(2)
because t = 2 corresponds to the beginning of day 3. Note that H ′(t) = tet

because this is the rate of change of the height of the plant. Now, the integral∫
tet dt

is an integration by parts problem. By LIATE, we choose

u = t dv = et dt

du = dt v =
∫
et dt = et.

So by equation (3),∫
tet dt = t

↑
u

et
↑
v

−
∫
et
↑
v

dt
↑
du

= tet − et + C = (t− 1)et + C.

We need to find H(t) given our initial condition H(0) = 0.

0 = (0− 1)e0 + C = −1 + C ⇒ C = 1.

Thus,
H(t) = (t− 1)et + 1.

Finally,
H(2) = (2− 1)e2 + 1 = e2 + 1.

The plant is e2 + 1 inches tall at the beginning of the third day.





Lesson 6: Diff. Eqns.: Solns, Growth and Decay, & Sep. of
Variables

1. Separable Differential Equations

Definition 13. A differential equation is an equation that includes one or
more derivatives of a function.

Ex 1.
dy

dt
= 8y, y′ = t cos y, y′ = x3y + xy2, and

dy

dt
= (cos t)y + t2 +

1

3
y are all

examples of differential equations.

Definition 14. A differential equation is called separable if it can be written

in the form
dy

dx
= f(x)g(y).

Ex 2.

• dy
dt

= 8y, y′ = tcos y are separable

• y′ = x3y + xy2,
dy

dt
= (cos t)y + t2 +

1

3
y are NOT separable

We may think of separability as being able to move one variable to a one side
of the equal sign and the other variable to the other, thinking of the equal sign as
separating the variables.

Ex 3. We show that
dy

dx
= x2e3y−2x4 is separable.

We need to rewrite this as
dy

dx
= (function of x)× (function of y). Write

x2e3y−2x4 = x2e3ye−2x4

=
x2e3y

e2x4

=

(
x2

e2x4

)
↑

only
x

(e3y)
↑

only
y

So this differential equation is separable.

Definition 15. A solution to a differential equation is a function that you can
plug into the differential equation and make the equal sign be true.

71
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Ex 4. A solution to
dy

dx
=
x

y

is y(x) =
√
x2 − 17 because

dy

dx
=

d

dx
(y(x)) =

d

dx

(√
x2 − 17

)
︸ ︷︷ ︸

y(x)

=
d

dx
(x2 − 17)1/2

=
1

2
(x2 − 17)−1/2(2x) by chain rule

=

(
1

2

1√
x2 − 17

)
(2x)

=
x√

x2 − 17

=
x

y
since y =

√
x2 − 17

Definition 16. A particular solution is a solution without any unknowns.

Think of this as solving for C after an indefinite integral when you have initial
conditions.

Examples.

1. Find the particular solution to the following:

dy

dx
=
x2

y2
; if y = 1 when x = 0.

Solution: This is a separable differential equation because

x2

y2
= x2

↑
only
x

(
1

y2

)
↑

only
y

.

We like separable differential equations because we can do the following:

dy

dx
=
x2

y2

⇒ y2 dy

dx
= x2

⇒ y2 dy = x2 dx

⇒
∫
y2 dy =

∫
x2 dx
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⇒ 1

3
y3 =

1

3
x2 + C

Note 17. We only add one C, and it doesn’t matter what side you put
it on. I tend to put it on the RHS but there is nothing wrong with putting
it on the left hand side (LHS).

Now, the solution we are looking for is a function y(x). So we need to
solve for y. Write

1

3
y3 =

1

3
x2 + C

⇒ y3 = x3 + 3C

⇒ y =
3
√
x3 + 3C

⇒ y
(?)
=

3
√
x3 + C

We call y(x) = 3
√
x3 + C the general solution because there are un-

knowns. Our final step is to find the appropriate C. We were told that y = 1
when x = 0, so

1 = 3
√

(0)3 + C =
3
√
C.

Raising both sides to the third power, we get C = 1. Going back to our
general solution,

y =
3
√
x3 + C =

3
√
x3 + 1.

Therefore, the particular solution is

y = 3
√
x3 + 1 .

Note 18. The 1 does NOT go on the outside of the cube root.

2. Proportionality Constants

Differential equations are useful in modeling a variety of situations like popula-
tions and radioactive decay. A particular type of differential equation that appears
frequently in this class is one that involves proportionality constants. A common
theme is a substance or population changing proportionally to the function of itself.
We address what this means through a series of examples.

Ex 5. Suppose a population of deer in Pulaski County, Arkansas changes propor-
tionally to itself. Use a differential equation to describe this phenomenon.

(?) C is an arbitrary constant until we apply an initial condition, like if y = 1 when x = 0.
Until we introduce such a condition, then we can replace 3C by C as being equally arbitrary. If this
is uncomfortable, replace 3C by C ′ instead.
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Let y(t) be the population of deer in Pulaski County at time t. The change
in population is described by the derivative of the population function, which is

y′(t) =
dy

dt
. The phrase “changes proportionally to itself” is represented by

y′ =
dy

dt
= ky

where k is called the proportionality constant. This constant depends on the
specifics of what is being modeled and is often something which must be found when
solving for the particular solution.

Ex 6. Suppose after a February snow storm in Madison, Wisconsin the snow melts
at a rate of 2.4 times the square of the number of inches of snow on the ground. How
would we model this situation?

Let A(t) be the number of inches of snow. Since the snow is melting at a rate of
2.4 times the square of A(t), our differential equation is given by

A′ =
dA

dt
= −2.4A2.

Observe here that k = −2.4 because the snow is melting — meaning A(t) is decreasing
and thus has a negative derivative.

Ex 7. Assume the cost of ice cream changes inversely proportional to the tem-
perature outside. Write down a differential equation to describe this situation.

Suppose C(x) is the cost of ice cream where x is degrees Fahrenheit. Our differ-
ential equation is given by

C ′(x) =
k

C(x)
.

Ex 8. Suppose in a particular group of 10,000 people, the change in number of
people in a Ponzi scheme is jointly proportional to the number of people in the scheme
and the number of people not in the scheme. Use a differential equation to describe
this situation.

Let P (t) be the number of people in the Ponzi scheme at time t. Then, the number
of people not in the scheme is given by 10,000− P (t). Joint proportionality means

P ′(t) = kP (t)(10,000− P (t)).

3. Basic Examples

Examples.

2. Find the particular solution to the differential equation

y′ = ky given y(0) = 12, y′(0) = 24.

Solution: Our first step for solving to y is to find k (which is the propor-
tionality constant). We are told that y(0) = 12 and y′(0) = 24. Because our
differential equation is y′(t) = ky(t), this is true for any t, including t = 0:

24 = y′(0) = ky(0) = 12k.
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Hence, we have 24 = 12k ⇒ k = 2. Substituting,

y′ = 2y.

This is a separable differential equation and we can apply the same tech-
nique as in Example 1. Write

y′ =
dy

dt
= 2y

⇒ 1

y

dy

dt
= 2

⇒ 1

y
dy = 2 dt

⇒
∫

1

y
dy =

∫
2 dt

⇒ ln |y| = 2t+ C

There are two equally valid ways to proceed from here: we can first solve
for y and then solve for C, or we can first solve for C and then solve for y.
In this situation, we will first solve for C and then solve for y. The initial
condition y(0) = 12 implies that

ln |y(t)| = 2t+ C

⇒ ln |y(0)| = 2(0) + C if t = 0

⇒ ln( 12
↑

y(0)

) = C

Next, we need only solve for y.

To undo natural log, we apply e to both sides. So, we write

ln |y| = 2t+ ln(12)︸ ︷︷ ︸
C

⇒ eln |y| = e2t+ln(12)

⇒ |y| = e2t+ln(12)

= e2teln(12)

= e2t(12)

= 12e2t.

So we have |y| = 12e2t.

The absolute value here leaves us with a choice: either

y = 12e2t or y = −12e2t.

But, because y(0) = 12, we conclude that

y = 12e2t .
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3. Suppose P (t) is the mass of a radioactive substance at time t. If P ′(t) =

−3

2
P (t), find the half-life of the substance.

Definition 19. The half-life of a substance is the amount of time it
takes for half of the substance to disappear.

Solution: This may appear to be an impossible problem because we are
not told how much of the substance we initially have. For the time being,
let A be the original amount of the substance. By definition of half-life, we

want to find the t such that P (t) =
A

2
. We are given P ′(t) = −3

2
P (t), which

is separable. So we write

dP

dt
= −3

2
P

⇒ 1

P

dP

dt
= −3

2

⇒ 1

P
dP = −3

2
dt

⇒
∫

1

P
dP =

∫ (
−3

2

)
dt

⇒ ln |P | = −3

2
t+ C

⇒ eln |P | = e−3t/2+C

⇒ |P | = e−3t/2+C

Because we never expect a substance to have a negative amount, we can
assume that P is never negative and write

P = e−3t/2+C .

Here, we need to make the following observation: we assumed that at
time t = 0, we have an amount A. This means P (0) = A. But, by our
equation above,

P (0) = e−3(0)/2+C = e0

↑
1

eC = eC .

Therefore, A = eC . Why is this useful? This lets us write

e−3t/2+C =
A

2

⇒ e−3t/2eC
↑
A

=
A

2

⇒ e−3t/2A =
A

2
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⇒ e−3t/2 =
1

2

⇒ ln e−3t/2 = ln

(
1

2

)
⇒ −3

2
t = ln

(
1

2

)
⇒ t = −2

3
ln

(
1

2

)

Thus, the half-life of this substance is

t = −2

3
ln

(
1

2

)
.

Here, we note that the half-life is independent of the initial amount of sub-
stance. Further, this t might appear to be a negative number (which wouldn’t
make sense) but note that ln x < 0 whenever x < 1.

Note 20. [Useful Info]

– If P ′(t) = kP (t), then half-life is given by
ln
(

1
2

)
k

.

– The general solution to P ′(t) = kP (t) is P (t) = Aekt where P (0) = A.

4. Find the general solution to

dy

dt
= k(50− y).

We assume here that 50− y > 0.

Solution: This is a separable differential equation and looks very similar
to Example 3. However, we need to be very careful when we integrate. Write

dy

dt
= k(50− y)

⇒ 1

50− y
dy

dt
= k

⇒ 1

50− y
dy = k dt

⇒
∫

1

50− y
dy =

∫
k dt
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Observe that

∫
1

50− y
dy is a u-substitution problem: let u = 50 − y, then

du = − dy (note the negative). Hence∫
1

50− y
dy =

∫
−1

u
du = − ln |u| = − ln |50− y|.

So

− ln |50− y| = kt+ C

⇒ ln |50− y| = −kt −C︸︷︷︸
(??)

We now want to solve for y. Write

ln |50− y| (??)
= −kt+ C

⇒ eln |50−y| = e−kt+C

⇒ |50− y| = e−kt+C .

Since we assumed that 50− y > 0, we may drop the absolute values and so
our equation becomes

50− y = e−kt+C .

Then, solving for y, we have

50 = e−kt+C + y ⇒ 50− e−kt+C = y.

If we let C = −eC (or C ′′ = −eC′), our general solution is

y = 50 + Ce−kt .

4. Additional Examples

Examples.

1. Suppose a pot roast was 175◦F when removed from an oven and set in a 70◦F
room. If after 10 minutes the pot roast is 160◦F, what is its temperature after
an hour? Round your answer to the 4th decimal place.

Solution: This problem requires Newton’s Cooling Formula:

dT

dt
= k(T − S)

where T (t) is the temperature function and S is the ambient (surrounding)
temperature.

We can choose to measure time t however we wish. Here, given this
particular question, we measure t in minutes. We are given T (0) = 175,

(??) We replace −C by C or by C ′, whichever is more comfortable.
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T (10) = 160, S = 70. Write

dT

dt
= k(T − 70)

⇒ 1

T − 70
dT = k dt

⇒
∫

1

T − 70
dT =

∫
k dt.

We need to compute ∫
1

T − 70
dT.

Let u = T − 70, then du = dT . So∫
1

T − 70
dT =

∫
1

u
du

= ln |u|

= ln |T − 70|.

Thus, ∫
1

T − 70
dT =

∫
k dt

⇒ ln |T − 70| = kt+ C

We apply e to both sides to undo the natural log. We get

eln |T−70|︸ ︷︷ ︸
|T−70|

= ekt+C = ekt eC︸︷︷︸
C or C′

⇒ T − 70 = Cekt.

Here, we drop the absolute value because we assume the temperature of the
pot roast doesn’t drop below the temperature of the room. Evaluating at
t = 0, we see that

T (0)︸︷︷︸
175

−70 = ek(0)︸︷︷︸
1

C = C

⇒ 175− 70 = C

⇒ 105 = C.

Hence,

T − 70 = 105ekt

which becomes

T = 105ekt + 70.
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We’re not done yet since to get a particular solution, we must find k.
Evaluating at t = 10, we have

160 = T (10) = 105ek(10) + 70

⇒ 90 = 105e10k

⇒ 6

7
=

90

105
= e10k

⇒ ln

(
6

7

)
= 10k

⇒ 1

10
ln

(
6

7

)
= k.

Putting this together,

T (t) = 105eln(6/7)t/10 + 70.

Now, to find the temperature after an hour, take t = 60. Then

T (60) = 105eln(6/7)(60)/10 + 70 ≈ 111.6398◦ .

2. Solve the initial value problem for y as a function of t when y′ = −tn with
y(0) = 18 where n is a constant and n ≥ 0.

Solution: We are told that y is a function of t, which means that y′ =
dy

dt
.

Thus, our differential equation becomes

y′ = −tn ⇒ dy

dt
= −tn ⇒ dy = −tn dt.

Next, we integrate:

y =

∫
dy =

∫
−tn dt.

Since n ≥ 0, we know that n 6= −1. Hence, by the power rule, we have∫
−tn dt = − 1

n+ 1
tn+1 + C.

Thus,

y = − 1

n+ 1
tn+1 + C.

Now, because y(0) = 18, we have

18 = − 1

n+ 1
(0)n+1︸ ︷︷ ︸

0

+C = C.



4. ADDITIONAL EXAMPLES 81

We conclude that

y(t) = − 1

n+ 1
tn+1 + 18 .

3. A bacterial culture grows at a rate proportional to its population. Suppose
the population is initially 10,000 and after 2 hours the population has grown
to 25,000. Find the population of bacteria as a function of time.

Solution: This is asking us to find a particular solution. Let P (t) be the
population of bacteria at time t hours. We are told that population grows
at a rate proportional to its population, which means we have the following
differential equation

P ′(t) = kP (t)

for k the proportionality constant (which we will need to find). Further, we
are told

P (0) = 10,000 and P (2) = 25,000.

We will first find the general solution to P ′(t) = kP (t) and then use P (0)
and P (2) to find the particular solution. We write

P ′(t) = kP (t)

⇒ dP

dt
= kP

⇒ 1

P
dP = k dt

⇒
∫

1

P
dP =

∫
k dt

⇒ ln |P | = kt+ C

⇒ eln |P | = ekt+C

⇒ |P | = ekt+C

⇒ P = ekt+C = eCekt = Cekt

where we drop the absolute values because we assume the population is never
negative. Thus,

P (t) = Cekt.

Next, P (0) = 10,000 implies

C ek(0)︸︷︷︸
1

= 10,000 ⇒ C = 10,000.

Further, since P (2) = 25,000,

25,000 = 10,000ek(2)

⇒ 2.5 = e2k

⇒ ln(2.5) = ln e2k
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⇒ ln(2.5) = 2k

⇒ ln(2.5)

2
= k

Therefore,

P (t) = 10, 000eln(2.5)t/2 .

Note 21. We could have also remembered that the general solution to
P ′(t) = kP (t) is P (t) = Cekt where C = P (0). Then we could have skipped
to the step that used P (2) to find k.

4. Find y such that y′ = −7 ln t.

Solution: We are asked to find the general solution to y′ = −7 ln t. Write

y′ = −7 ln t

⇒ dy

dt
= −7 ln t

⇒ dy = −7 ln t dt

⇒
∫
dy =

∫
−7 ln t dt

⇒ y =

∫
−7 ln t dt

To find y, we need to evaluate∫
− 7 ln t dt

which might seem tricky but is actually not difficult. This is an integration
by parts problem. Consider the following table:

u = ln t dv = −7 dt

du =
1

t
dt v =

∫
−7 dt = −7t

Hence, ∫
− 7 ln t dt = ln t︸︷︷︸

u

(−7t)︸ ︷︷ ︸
v

−
∫
−7t︸︷︷︸
v

(
1

t
dt

)
︸ ︷︷ ︸

du

= −7t ln t+

∫
7 dt

= −7t ln t+ 7t+ C
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Thus, we conclude that

y = −7t ln t+ 7 ln t+ C .

4. A radioactive element decays with a half-life of 6 years. If the mass of the
element weighs 7 pounds at t = 0, find the amount of the element after 13.9
years. Round your answer to 4 decimal places.

Solution: The differential equation which describes the decay of a ra-
dioactive element is

y′ = ky

where y(t) is the amount of the element in pounds after t years. By our
formulas from Note (20), the half-life of a radioactive element is given by

half-life =
ln
(

1
2

)
k

.

Since we know that the half-life is 6, we see that

k =
ln
(

1
2

)
6

.

If y is the solution to y′ = ky, then

y = y(0)ekt = y(0)eln(1/2)t/6.

We know that there are 7 pounds of the element at t = 0, which is to say
that y(0) = 7. Hence,

y = 7eln(1/2)t/6.

Finally, we need only compute y(13.9):

y(13.9) = 7eln(1/2)(13.9)/6 ≈ 1.4051 pounds .

5. After 10 minutes in Jean-Luc’s room, his tea has cooled to 45◦ Celsius from
100◦ Celsius. The room temperature is 25◦ Celsius. How much longer will it
take to cool to 37◦? (Round your answer to the nearest hundredth).

Solution: We need to use Newton’s Cooling Formula again. The differ-
ential equation describing the change in the temperature is given by

dT

dt
= k(T − S)

where T is the temperature, t is minutes, and S is the surrounding tempera-
ture. We are told that the tea is initially 100◦C, which is to say T (0) = 100,
and after 10 minutes it cools to 45◦C, T (10) = 45. Our goal is to find
the time past this 10 minutes at which the tea will cool to 37◦C (as the
question asks how much longer it will take to cool).
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First, we find the generic solution to the differential equation where we
take S = 25◦C. Write

dT

dt
= k(T − 25)

⇒ dT

T − 25
= k dt

⇒
∫

dT

T − 25
=

∫
k dt

For the LHS, we take u = T − 25, then∫
dT

T − 25
=

∫
du

u

= ln |u|

= ln |T − 25|

= ln(T − 25)

where we drop the absolute values as we assume the T never drops below
25◦C.

Thus, we see that

ln(T − 25) = kt+ C

⇒ eln(T−25) = ekt+C = eC︸︷︷︸
C or C′

ekt

⇒ T − 25 = Cekt

⇒ T = Cekt + 25

Now that we have the general solution, we use the initial conditions
T (0) = 100 and T (10) = 45 to determine C and k. Since T (0) = 100,

100 = Cek(0) + 25

⇒ 75 = Ce0

↑
1

⇒ 75 = C

which implies T = 75ekt + 25.

Next, since T (10) = 45, we have

45 = 75ek(10) + 25

⇒ 20 = 75e10k

⇒ 20

75
= e10k
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⇒ ln

(
4

15

)
= ln e10k

⇒ ln

(
4

15

)
= 10k

⇒ 1

10
ln

(
4

15

)
= k

From this, we conclude that

T = 75eln(4/15)t/10 + 25.

Finally, we determine the t such that T (t) = 37. Write

37 = 75eln(4/15)t/10 + 25

⇒ 12 = 75eln(4/15)t/10

⇒ 12

75
= eln(4/15)t/10

⇒ ln

(
4

25

)
= ln eln(4/15)t/10

⇒ ln

(
4

25

)
=

1

10
ln

(
4

15

)
t

⇒
10 ln

(
4

25

)
ln

(
4

15

) = t

Our final answer is

t− 10 =

10 ln

(
4

25

)
ln

(
4

15

) − 10 ≈ 3.86 minutes .





Lesson 7: Differential Equations: Separation of Variables (I)

1. Solutions to In-Class Examples

Example 1. Find y(t) such that

dy

dt
− 2tky = 0

where y(0) = 1 and y(1) = e2/7.

Solution: We separate variables in our equation:

dy

dt
− 2tky = 0

⇒ dy

dt
= 2tky

⇒ dy

y
= 2tk dt

Next, we set up our integral. ∫
dy

y
=

∫
2tk dt.

Now, to integrate the RHS, we need to determine whether k = −1 or k 6= −1. We go
on a bit of an aside to discuss why k 6= −1.

Suppose for the moment that k = −1. Then, we know that t−1 to make sense, t
needs to avoid 0. Take t > 0 and write∫

dy

y
=

∫
2t−1 dt

⇒ ln |y| = 2 ln t+ C

⇒ y = e2 ln t+C

= eCe2 ln t

= Celn t2

y = Ct2

Now, if y(0) = 1, then

1 = C(0)2 = 0

is a contradiction. Since math is all about consistency, we have to discount this
possibility. So, we conclude that k 6= −1.

87
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Since we know k 6= −1, we integrate:∫
dy

y
=

∫
2tk dt

⇒ ln |y| = 2

k + 1
tk+1 + C

⇒ |y| = e2tk+1/(k+1)+C

= e2t/(k+1)eC

⇒ |y| = Ce2tk+1/(k+1)

We assume that y > 0 and so we have

y = Ce2tk+1/(k+1).

Since y(0) = 1, we have

1 = C e2(0)k+1/(k+1)︸ ︷︷ ︸
1

= C.

Thus, y = e2tk+1/(k+1). Further, y(1) = e2/7 which means

e2/7 = e2(1)k+1/(k+1)

= e2/(k+1)

⇒ ln e2/7 = ln e2/(k+1)

⇒ 2

7
=

2

k + 1

⇒ 1

7
=

1

k + 1

⇒ k + 1 = 7

⇒ k = 6

Therefore,

y = e(2/7)t7 .

Example 2. A clay mug is 1500◦F when it is removed from a kiln and placed in a
room with a constant temperature of 70◦F. After 2 hours, the mug is 1200◦F. What is
the temperature of the mug after 5 hours? Round your answer to the nearest degree.

Solution: We use Newton’s Cooling Formula:

dT

dt
= k(T − S)

where T (t) is the temperature at time t hours and S is the surrounding temperature.

Let T (t) be the temperature of the mug after t hours. Since the room is 70◦F, we
have

dT

dt
= k(T − 70).
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We separate the variables and integrate:

dT

dt
= k(T − 70)

⇒ dT

T − 70
= k dt

⇒
∫

dT

T − 70
=

∫
k dt

⇒ ln |T − 70| = kt+ C

⇒ |T − 70| = ekt+C

= ekteC

⇒ |T − 70| = Cekt

We may assume that the temperature of the mug never dips below 70◦F and so we
don’t need the absolute values. We have

T − 70 = Cekt ⇒ T = Cekt + 70.

We know T (0) = 1500. Thus, we have

1500 = C ek·0︸︷︷︸
1

+70

⇒ 1500 = C + 70

⇒ 1430 = C

We conclude T = 1430ekt + 70 and since T (2) = 1200, we may write

1200 = 1430ek·2 + 70

⇒ 1130 = 1430e2k

⇒ 1130

1430
= e2k

⇒ ln

(
113

143

)
= 2k

⇒ 1

2
ln

(
113

143

)
= k.

This means
T = 1430eln(113/143)t/2 + 70.

Finally, we compute T (5):

T (5) = 1430e5 ln(113/143)/2 + 70 ≈ 864◦F .
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Example 3. Suppose the volume of a balloon being inflated satisfies

dV

dt
= 10

5
√
V 2

where t is time in seconds after the balloon begins to inflate. If the balloon pops
when it reaches a volume of 400 cm3, after how many seconds will the balloon pop?
Round your answer to 3 decimal places.

Solution: We are given

dV

dt
= 10

5
√
V 2 = 10(V 2)1/5 = 10V 2/5.

So,

dV

dt
= 10V 2/5

⇒ 1

V 2/5
dV = 10 dt

⇒ V −2/5 dV = 10 dt

⇒
∫
V −2/5 dV =

∫
10 dt

⇒
(

1

−2/5 + 1

)
V −2/5+1 = 10t+ C

⇒
(

1

3/5

)
V 3/5 = 10t+ C

⇒ 5

3
V 3/5 = 10t+ C.

Since V (0) = 0,

5

3
(0)3/5 = 10(0) + C ⇒ C = 0.

Our equation is then

5

3
V = 10t.

We could solve for V , but observe that our ultimate goal is to find the t such that
V (t) = 400. Hence, we need only write

5

3
( 400︸︷︷︸
V (t)

)3/5 = 10t

and solve for t. But this is just

t =
1

6
(400)3/5 ≈ 6.069 seconds .
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Example 4. A wet towel hung on a clothesline to dry outside loses moisture at a
rate proportional to its moisture content. After 1 hour, the towel has lost 15% of its
original moisture content. After how long will the towel have lost 80% of its original
moisture content? Round your answer to the nearest hundredth.

Solution: Let M(t) be the percentage of the original moisture content the towel
has after t hours. Then

M ′(t) = kM(t) = 100ekt

for k the proportionality constant. We know M(0) = 100 because we assume at time
t that the towel has not lost any moisture content and M(1) = 100−15 = 85 because
after 1 hour the towel is less 15% of its moisture. Our goal is to find the time t such
that M(t) = 100− 80 = 20.

The general solution to a differential equation of the form M ′(t) = kM(t) is

M(t) = M(0)ekt.

So, we need to solve

M(t) = 100ekt

for k. Since M(1) = 85,

85 = 100ek(1) = 100ek,

which implies

.85 = ek ⇒ ln(.85) = k.

We want to find the t such that

20 = M(t) = 100eln(.85)t.

Write

.2 = eln(.85)t,

which, after applying ln to both sides, becomes

ln(.2) = ln(.85)t ⇒ t =
ln(.2)

ln(.85)
≈ 9.9 hours .

2. Additional Examples

Examples.

1. Find the general solution to

dy

dt
+ 50y = 0.
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Solution: Since we are finding a general solution, we are not asked to
solve for all the unknowns. Write

dy

dt
+ 50y = 0

⇒ dy

dt
= −50y

⇒ 1

y
dy = −50 dt

⇒
∫

1

y
dy =

∫
(−50) dt

⇒ ln |y| = −50t+ C

⇒ eln |y| = e−50t+C

⇒ |y| = e−50t+C .

Here, we have a choice for y: either

y = e−50t+C or y = −e−50t+C .

For this class, we’re always going to want our functions to be non-negative,
so we drop the absolute values and write

y = e−50t+C = e−50t eC︸︷︷︸
C or C′

= Ce−50t.

Hence,

y = Ce−50t .

2. Find the particular solution to the equation

dA

dt
= (120− A) such that A(0) = 100, A < 120 for all t.

Solution: The fact that A < 120 for all t tells us that 120−A > 0. So,

dA

dt
= 120− A

⇒ 1

120− A
dA = dt

⇒
∫

1

120− A
dA =

∫
dt

The LHS is a u-sub problem. If u = 120− A, then du = − dA. So∫
1

120− A
dA =

∫
−1

u
du = − ln |u| = − ln |120− A|.
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Thus, ∫
1

120− A
dA =

∫
dt

⇒ − ln |120− A| = t+ C

⇒ ln |120− A| = −t −C︸︷︷︸
+C or C′

We have assumed that 120 − A > 0, so we may drop the absolute values.
Hence,

ln |120− A| = −t+ C

⇒ ln(120− A) = −t+ C

⇒ eln(120−A) = e−t+C

⇒ 120− A = e−t+C

⇒ 120− e−t+C = A

⇒ 120− eC︸︷︷︸
C or C′′

e−t = A.

So our solution is of the form

A = 120− Ce−t.

We were told that A(0) = 100, which means

100 = 120− Ce−0 = 120− C ⇒ C = 20.

Therefore,

A = 120− 20e−t .

3. Find the particular solution to

dy

dx
= 9x2e−x

3

given y = 7 when x = 3.

Solution: We write

dy

dx
= 9x2e−x

3

⇒ dy = 9x2e−x
3

dx

⇒
∫

dy =

∫
9x2e−x

3

dx
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We use u-substitution to integrate the RHS. Take u = −x3,
du

dx
= −3x2

which gives ∫
9x2e−x

3

dx =

∫
9x2eu

(
− du

3x2

)
︸ ︷︷ ︸

dx

=

∫
−3eu du

= −3eu + C

= −3e−x
3

+ C

Hence, we see that

y = −3e−x
3

+ C.

Now, since y = 7 when x = 3, we write

7 = −3e−(3)3 + C

⇒ 7 = −3e−27 + C

⇒ 7 + 3e−27 = C

We conclude

y = −3e−x
3

+ 7 + 3e−27 .

4. Find the particular solution to

dy

dt
+ y sin t = 0

given y(π) = 8.

Solution: Separating our variables, we write

dy

dt
+ y sin t = 0

⇒ dy

dt
= −y sin t

⇒ dy

y
= − sin t dt

⇒
∫
dy

y
=

∫
− sin t dt

⇒ ln |y| = cos t+ C

⇒ |y| = ecos t+C

= ecos teC
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⇒ |y| = Cecos t

We assume that y > 0 and so

y = Cecos t.

We use y(π) = 8 to solve for C:

8 = Cecosπ

= Ce−1

⇒ 8e = C

Note that
(8e)ecos t = (8e1)ecos t = 8ecos t+1.

Thus,

y = y = 8ecos t+1 .

5. Find the general solution to

dy

dt
= 7e−5t−y.

Solution: Write

dy

dt
= 7e−5t−y

= 7e−5te−y

⇒ ey
dy

dt
= 7e−5t e−yey︸ ︷︷ ︸

e−y+y=e0=1

⇒ ey dy = 7e−5t dt

⇒
∫
ey dy =

∫
7e−5t dt

⇒ ey = −7

5
e−5t + C

⇒ ln(ey) = ln

(
−7

5
e−5t + C

)

⇒ y = ln

(
−7

5
e−5t + C

)
6. Find the particular solution to

dy

dx
=

2x+ 1

3y2

given y = 4 when x = 0.
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Solution: Separating variables,

dy

dx
=

2x+ 1

3y2

⇒ 3y2 dy = (2x+ 1) dx

⇒
∫

3y2 dy =

∫
(2x+ 1) dx

⇒ y3 = x2 + x+ C

⇒ y =
3
√
x2 + x+ C

Since y = 4 when x = 0,

4 =
3
√

02 + 0 + C

=
3
√
C

64 = C

Hence,

y = 3
√
x2 + x+ 64 .



Lesson 8: Differential Equations: Separation of Variables (II)

1. Solutions to In-Class Examples

Example 1. Find the general solution to

x3y′ = y′ + x2e−y.

Solution: We first want to move y′ to one side and everything else to the other.
We have

x3y′ = y′ + x2e−y

⇒ x3y′ − y′ = x2e−y

⇒ (x3 − 1)y′ = x2e−y

⇒ y′ =
x2e−y

x3 − 1

⇒ dy

dx
=

x2e−y

x3 − 1

Now, we want to separate the variables. Multiply both sides by ey. Then we get

ey
dy

dx
=
x2e−yey

x3 − 1

⇒ ey
dy

dx
=
x2e−y+y

x3 − 1

⇒ ey
dy

dx
=

x2e0

x3 − 1

⇒ ey
dy

dx
=

x2

x3 − 1

⇒ ey dy =
x2

x3 − 1
dx.

Our next step is integration, that is,∫
ey dy =

∫
x2

x3 − 1
dx.

The RHS is a u-substitution problem. Let u = x3−1, then du = 3x2 dx ⇒ du

3x2
= dx.

So

97
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∫
x2

x3 − 1
dx =

∫
x2

u

(
1

3x2
du

)
=

∫
1

3u
du

=
1

3

∫
1

u
du

=
1

3
ln |u|+ C

=
1

3
ln |x3 − 1|+ C.

Thus, ∫
ey dy =

∫
x2

x3 − 1
dx

⇒ ey =
1

3
ln |x3 − 1|+ C.

Next, we need to get y by itself so apply ln to both sides. We get

ln ey = ln

(
1

3
ln |x3 − 1|+ C

)

⇒ y = ln

(
1

3
ln |x3 − 1|+ C

)
.

Note 22. Observe that

ln(a+ b) 6= ln a+ ln b,

so the solution is NOT the same as

ln

(
1

3
ln |x3 − 1|

)
+ C.

Example 2. Suppose during a chemical reaction, a substance is converted into
a different substance at a rate inversely proportional to the amount of the original
substance at any given time t. If there were initially 10 grams of the original substance
and after an hour only 8 grams remained, how much of the original substance is there
after 2 hours? Round your answer to the nearest hundredth.

Solution: Let y(t) be the number of grams of the original substance at time t
hours. We are told that the rate of change is inversely proportional to the amount

of the substance. That means our differential equation is given by
dy

dt
=
k

y
where k

is an unknown constant that we will need to find.

Ultimately, the question asks us to find y(2) given the following information:
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dy

dt
=
k

y

y(0) = 10

y(1) = 5.

We see our differential equation is separable, so we write

dy

dt
=
k

y

⇒ y dy = k dt.

Next, we integrate: ∫
y dy =

∫
k dt

⇒ 1

2
y2 = kt+ C.

Because we are told y(0) = 10, we have

1

2
(10)2 = k(0) + C ⇒ C = 50.

So our equation becomes

1

2
y2 = kt+ 50.

Moreover, since y(1) = 8,

1

2
(8)2 = k(1) + 50

⇒ 32 = k + 50

⇒ 32− 50 = k

⇒ −18 = k.

Solving for y,

1

2
y2 = −18t+ 50

⇒ y2 = −36t+ 100

⇒ y =
√
−36t+ 100.

We are asked to find y(2), so

y(2) =
√
−36(2) + 100

=
√
−72 + 100
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=
√

28

≈ 5.29 grams

Example 3. A 500-gallon tank initially contains 250 gallons of brine, a salt and
water combination. Brine containing 2 pounds of salt per gallon flows into the tank
at a rate of 4 gallons per minute. Suppose the well-stirred mixture flows out of the
tank at a rate of 2 gallons per minute. Set up a differential equation for the amount
of salt (in pounds) in the tank at time t (minutes).

Solution: We are asked to set up the equation but not to solve it. For this type
of problem, units are very important. Let A(t) be the pounds of salt in the tank at

time t minutes. By how we have defined our function, the units associated to
dA

dt
are

lbs/min. Hence

dA

dt
= [Rate of salt in lbs/min]− [Rate of salt out lbs/min].

[Rate of salt in]: Every minute, 4 gallons flow into the tank and each gallon con-

tains 2 pounds of salt. So

[Rate of salt in] =

(
2 lbs

1 gal

)
︸ ︷︷ ︸

salt in
per gal

(
4 gal

1 min

)
︸ ︷︷ ︸

water in
per min

= salt in per minute

= 8 lbs/min

[Rate of salt out]: The difficulty here is understanding what well-stirred means.

Well-stirred means that each gallon in the tank has as much salt in it as any other
gallon. Thus, to correctly interpret “well-stirred”, we need to take the total amount
of salt in the tank and divide it by the total amount of liquid in the tank. There are
initially 250 gallons of brine and each minute, 2 gallons are added to the tank (to see
that 2 gallons are added to the tank each minute, consider

4 gal/min
↑
in

− 2 gal/min
↑

out

= +2 gal/min).

So, we see that

[Rate of salt out] =

(
A(t) lbs

250 + (4− 2)t gal

)
︸ ︷︷ ︸

salt out
per gal

(
2 gal

1 min

)
︸ ︷︷ ︸

water out
per min

= salt out per minute

=
2A(t)

250 + 2t
lbs/min.



1. SOLUTIONS TO IN-CLASS EXAMPLES 101

Therefore, our differential equation is

dA

dt
= [Rate of salt in]− [Rate of salt out] = 8− 2A(t)

250 + 2t
.

Note 23. This is not a separable equation. To actually solve for this A(t), we
need a different technique which we will cover in Lesson 9. Fortunately, we are only
asked to set up the differential equation.

Example 4. A 700-gallon tank initially contains 400 gallons of brine containing
50 pounds of dissolved salt. Brine containing 6 pounds of salt per gallon flows into
the tank at a rate of 3 gallons per minute, and the well-stirred mixture flows out of
the tank at a rate of 3 gallons per minute. Find the amount of salt in the tank after
10 minutes. Round your answer to 3 decimal places.

Solution: Let A(t) be pounds of salt in the tank at time t minutes where we are
given A(0) = 50. Our goal is to find A(10).

As before, we have

dA

dt
= [Rate of salt in lbs/min]− [Rate of salt out lbs/min].

[Rate of salt in]:(
6 lbs

1 gal

)
︸ ︷︷ ︸

salt in
per gal

(
3 gal

1 min

)
︸ ︷︷ ︸

water in
per min

= 18 lbs/min = salt in per minute.

[Rate of salt out]:(
A(t) lbs

400− (3− 3)t gal

)
︸ ︷︷ ︸

salt out
per gal

(
3 gal

1 min

)
︸ ︷︷ ︸

water out
per min

=
3A(t)

400
lbs/min = salt out per minute.

Hence, our differential equation becomes

dA

dt
= 18

↑
in

− 3A(t)

400
↑

out

=
7200− 3A

400
.

This is a separable equation.

Note 24. The difference between this example and Example 3 is that the amount
of water coming into the tank and the amount of water leaving the tank cancel each
other out and this eliminates the t on the RHS. This transforms the problem into a
separation of variables differential equation.

We write (
400

7200− 3A

)
dA = dt
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⇒
∫ (

400

7200− 3A

)
dA =

∫
dt

To integrate the LHS, take u = 7200− 3A, then
du

dA
= −3. Then,∫ (

400

7200− 3A

)
dA =

∫ (
400

u

) (
−du

3

)
︸ ︷︷ ︸

dA

=

∫
−400

3u
du

= −400

3
ln |u|

= −400

3
ln |7200− 3A|

= −400

3
ln(7200− 3A)

since we assume that 7200− 3A > 0. Hence,∫ (
400

7200− 3A

)
dA =

∫
dt

⇒ −400

3
ln(7200− 3A) = t+ C

⇒ ln(7200− 3A) = − 3t

400
+ C

⇒ 7200− 3A = e3t/400+C

⇒ 7200− 3A = e3t/400eC

⇒ 7200− 3A = Ce3t/400

⇒ 7200 + Ce3t/400 = 3A

⇒ 2400 + Ce3t/400 = A

We conclude that
A = Ce3t/400 + 2400.

Since we are given A(0) = 50,

50 = C e−3(0)/400︸ ︷︷ ︸
1

+2400 = C + 2400⇒ C = −2350.

Thus,

A = −2350e−3t/400 + 2400.
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So,

A(10) = −2350e−30/400 + 2400 ≈ 219.803 lbs .

2. Additional Examples

Examples.

1. Find y(2) if y is a function of x such that

xy6y′ = 2 and y = 1 when x = 1.

Solution: This is a separable function, so our first step should be to
move x to the RHS. Write

xy6y′ = 2

⇒ y6y′ =
2

x

⇒ y6 dy

dx
=

2

x

⇒ y6 dy =
2

x
dx.

Now, we integrate: ∫
y6dy =

∫
2

x
dx

⇒ 1

7
y7 = 2 ln |x|+ C.

We are given that y = 1 when x = 1, so to find C we can write:

1

7
y7 = 2 ln |x|+ C

⇒ 1

7
(1)7 = 2 ln |1|︸︷︷︸

0

+C

⇒ C =
1

7

Hence,

1

7
y7 = 2 ln |x|+ 1

7
.

The question asks us to find y(2). So we need to get y by itself first.
Write

1

7
y7 = 2 ln |x|+ 1

7

⇒ y7 = 14 ln |x|+ 1

⇒ y = 7
√

14 ln |x|+ 1.



104 LESSON 8: DIFFERENTIAL EQUATIONS: SEPARATION OF VARIABLES (II)

Thus,

y(2) = 7
√

14 ln(2) + 1 .

2. Find the general solution to

t2y′ + 3y = 0.

Solution: We separate the variables:

t2y′ + 3y = 0

⇒ t2
dy

dt
= −3y

⇒ 1

y
dy = − 3

t2
dt

Next, we integrate.∫
1

y
dy =

∫
− 3

t2
dt =

∫
−3t−2 dt

⇒ ln y = −3

(
1

−2 + 1

)
t−2+1 + C

= −3

(
1

−1

)
t−1 + C

=
3

t
+ C

⇒ y = e3/t+C

= Ce3/t

3. Find the particular solution to

t2
dy

dt
+ y = 0

given y(3) = 9 where t > 0.

Solution: We separate the variables:

t2
dy

dt
+ y = 0

⇒ t2
dy

dt
= −y

⇒ dy

y
= − 1

t2
dt

⇒
∫
dy

y
=

∫
− 1

t2
dt
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⇒ ln |y| = 1

t
+ C

⇒ |y| = e1/t+C

= e1/teC

|y| = Ce1/t

We assume that y > 0. Thus,

y = Ce1/t.

We use y(3) = 9 to solve for C. Write

9 = Ce1/3

⇒ 9

e1/3
= C

⇒ 9e−1/3 = C

Note that

(9e−1/3)e1/t = 9e1/t−1/3.

Hence,

y = 9e1/t−1/3 .

4. Find the particular solution to

dy

dx
=

cos(11x)

e11y

given y = 2 when x = 0.

Solution: Write

dy

dx
=

cos(11x)

e11y

⇒ e11y dy = cos(11x) dx

⇒
∫
e11y dy =

∫
cos(11x) dx

⇒ 1

11
e11y =

1

11
sin(11x) + C

⇒ e11y = sin(11x) + C

⇒ 11y = ln(sin(11x) + C)

⇒ y =
1

11
ln(sin(11x) + C)
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Solving for C, we use y = 2 when x = 0:

2 =
1

11
ln(sin(11 · 0)︸ ︷︷ ︸

0

+C)

=
1

11
ln(C)

⇒ 22 = ln(C)

⇒ e22 = C

Hence,

y =
1

11
ln(sin(11x) + e22) .

5. Find the general solution to

dy

dx
=
√

4yex+8.

Solution: Separating variables,

dy

dx
=
√

4yex+8

⇒ dy√
4y

= ex+8 dx

⇒ (4y)−1/2 dy = ex+8 dx

⇒
∫

(4y)−1/2 dy =

∫
ex+8 dx

Now, to integrate the LHS, take u = 4y,
du

dy
= 4 and write∫

(4y)−1/2 dy =

∫
u−1/2

(
du

4

)
︸ ︷︷ ︸

dy

=
1

4

(
1

−1/2 + 1

)
u−1/2+1 du

=
1

4

(
1

1/2

)
u1/2

=
1

4
(2)u1/2

=
1

2
u1/2

=
1

2
(4y)1/2
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Putting this together,∫
(4y)−1/2 dy =

∫
ex+8 dx

⇒ 1

2
(4y)1/2 = ex+8 + C

⇒ (4y)1/2 = 2ex+8 + C

⇒ 4y = (2ex+8 + C)2

⇒ y =
1

4
(2ex+8 + C)2





Lesson 9: First Order Linear Differential Equations (I)

1. First Order Linear Differential Equations

Today we introduce a new type of differential equation called a first order linear
differential equation (FOLDE) and describe the method by which we solve them.

FOLDE are of the form

(5)
dy

dt
+ P (t)y = Q(t)

Observe the following about equation (5):

(a) the “+” is very important. Any “−” must be included in the P (t)

(b) the y being multiplied by the P (t) is to the first power

(c) P (t) and Q(t) do not include any y, they are functions only of t

If you cannot write the differential equation exactly in the form of equation (5),
then it is not a FOLDE.

Ex 1.

• dy
dt

+
3y

t
= t2 is a FOLDE with P (t) =

3

t
and Q(t) = t2

• y′ − 1

x
y = sinx2 is a FOLDE with P (x) = −1

x
and Q(x) = sinx2

Note 25 (FOLDE vs Separation of Variables). FOLDE is related to, but different,
from separation of variables. Sometimes these methods overlap but most of the time
only one method will apply. Take time to practice identifying when a particular
method will apply.

The key to solving this type of differential equation is an integrating factor,
that is, the function

(6) u(t) = e
∫
P (t) dt.

The solution of a FOLDE is found via

(7) y · u(t) =

∫
Q(t)u(t) dt.

y is the actual solution so, after we integrate the RHS, we must divide through
by u(t).

109
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To apply the FOLDE method, take the following steps:

1. Find P,Q

2. Find the integrating factor

3. Set up equation (7)

Examples.

1. Find the general solution to

dy

dx
+
y

x
= x.

Solution: We go through our steps.

Step 1: Find P,Q

P (x) =
1

x
, Q(x) = x

Step 2: Find the integrating factor

u(x) = e
∫
P (x) dx

= e
∫

1
x
dx

= eln |x|

= |x| (?)
= x

Note 26 (?). We are cheating here and using the simplifying as-
sumption that x > 0, which would mean that |x| = x.

Step 3: Set up equation (7)

y · u(x) =

∫
Q(x)u(x) dx

⇒ y x
↑

u(x)

=

∫
(x)︸︷︷︸
Q(x)

· (x)︸︷︷︸
u(x)

dx

=

∫
x2 dx

=
1

3
x3 + C

yx =
1

3
x3 + C

We divide both sides by x to get

y =
1

3
x2 +

C

x
.
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Note 27. It is important that when you divide through by x, you
also divide the C as well. C absorbs constants, not functions.

2. Given t2y′ + ty = 25 and y(1) = 0, find y(6).

Solution: This is a FOLDE but it isn’t in the right form (we want it to
look like equation (5)). Write

t2y′ + ty = 25

⇒ y′ +
ty

t2
=

25

t2

⇒ y′ +
y

t
=

25

t2

Now, since our new equation looks like equation (5), we can proceed.

Step 1: Find P,Q

P (t) =
1

t
, Q(t) =

25

t2

Step 2: Find the integrating factor

u(t) = e
∫
P (t) dt

= e
∫

1
t
dt

= eln |t|

= |t| (??)
= t

(??) Again, we cheat and assume that t > 0.

Step 3: Set up equation (7)

y · u(t) =

∫
Q(t)u(t) dt

⇒ y t
↑
u(t)

=

∫ (
25

t2

)
︸ ︷︷ ︸
Q(t)

·(t)
↑
u(t)

dt

⇒ y · t =

∫
25

t
dt

= 25 ln |t|+ C

= 25 ln(t) + C since t > 0

So we have
y · t = 25 ln(t) + C

which means

y =
25 ln(t)

t
+
C

t
.
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We have found the general solution, but we were asked to find y(6) given
y(1) = 0.

Since y(1) = 0,

0 =
25 ln(1)

1︸ ︷︷ ︸
0

+
C

1
⇒ C = 0.

Hence,

y =
25 ln(t)

t
.

Finally,

y(6) =
25 ln(6)

6

3. Find the general solution to

y′ + 4(tan 4x)y = 6 cos 4x

such that 0 < x <
π

8
.

Solution: This is in the proper form so we can apply our method.

Step 1: Find P,Q

P (x) = 4 tan 4x, Q(t) = 6 cos 4x

Step 2: Find the integrating factor

To integrate P (x), we need to do a substitution but we want to
reserve u to denote the integrating factor. Let

P (x) = 4 tan 4x =
4 sin 4x

cos 4x

and take w = cos 4x,
dw

dx
= −4 sin 4x. So we write∫

P (x) dx =

∫
4 sin 4x

cos 4x
dx

=

∫
4 sin 4x

w

(
− dw

4 sin 4x

)
︸ ︷︷ ︸

dx

=

∫
− 1

w
dw

= − ln |w|

= − ln | cos 4x|

= ln | sec 4x| since (cos 4x)−1 = sec 4x
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Thus, our integrating factor is given by

u(x) = e
∫
P (x) dx = eln | sec 4x| = | sec 4x|.

Over the interval 0 < x <
π

8
, sec 4x > 0 so we may drop the absolute

values.

Step 3: Set up equation (7)

y · u(x) =

∫
Q(x) · u(x) dx

⇒ y sec 4x︸ ︷︷ ︸
u(x)

=

∫
6 cos 4x︸ ︷︷ ︸
Q(x)

(sec 4x)︸ ︷︷ ︸
u(x)

dx

⇒ y sec 4x =

∫
6 dx

⇒ y sec 4x = 6x+ C

⇒ y =
6x

sec 4x
+

C

sec 4x

= 6x cos 4x+ C cos 4x

4. Find the general solution to

dy

dt
+ ety = −25et.

Solution: This is in the correct form so we go through our method.

Step 1: Find P,Q

P (t) = et, Q(t) = −25et

Step 2: Find the integrating factor

u(t) = e
∫
P (t) dt = e

∫
et dt = ee

t

Step 3: Set up equation (7)

y · u(t) =

∫
Q(t)u(t) dt

⇒ y ee
t︸︷︷︸

u(t)

=

∫
−25et︸ ︷︷ ︸
Q(t)

ee
t︸︷︷︸

u(t)

dt

⇒ yee
t

=

∫
−25etee

t

dt︸ ︷︷ ︸
(???)

where (? ? ?) is a u-substitution problem.
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For (? ? ?), take w = et,
dw

dt
= et and write∫

−25etee
t

dt =

∫
−25etew

(
dw

et

)
︸ ︷︷ ︸

dt

=

∫
−25ew dw

= −25ew + C

= −25ee
t

+ C

Thus,

yee
t

=

∫
−25etee

t

dt︸ ︷︷ ︸
(???)

⇒ yee
t

= −25ee
t

+ C

⇒ y =
−25ee

t
+ C

eet

= −25 + Ce−e
t

2. Additional Examples

Examples.

1. Find the general solution to

−dy
dt

+ y = t.

Solution: Again, this is not in the same form as equation (5). So we
rewrite:

−dy
dt

+ y = t ⇒ dy

dt
− y = −t.

Now, we can apply our method.

Step 1: Find P,Q
P (t) = −1, Q(t) = −t

Step 2: Find the integrating factor

u(t) = e
∫
P (t) dt

= e
∫
−1 dt

= e−t
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Step 3: Set up equation (7)

y · u(t) =

∫
Q(t)u(t) dt

⇒ y e−t︸︷︷︸
u(t)

=

∫
(−t)︸︷︷︸
Q(t)

· (e−t)︸︷︷︸
u(t)

dt

⇒ ye−t =

∫
−te−t dt︸ ︷︷ ︸

integration by parts
(�)

We find (�) using integration by parts. By LIATE,

u = −t dv = e−t dt

du = −dt v =
∫
e−t dt = −e−t

So, ∫
−te−t dt = −t︸︷︷︸

u

(−e−t)︸ ︷︷ ︸
v

−
∫

(−e−t)︸ ︷︷ ︸
v

(−dt)︸ ︷︷ ︸
du

= te−t −
∫
e−t dt

= te−t + e−t + C.

Therefore, we have

ye−t =

∫
−te−t dt (�)

= te−t + e−t + C

which means
y = t+ 1 + Cet .

Observe that the only unknown constant here is C. The 1 is not absorbed
by an arbitrary constant because it is not arbitrary.

2. Find the general solution to

(y − 1) sinx dx− dy = 0.

Solution: This equation is both a FOLDE and separable. We find the
solution using the FOLDE method. However, it is certainly not in the proper
form for either method. We write

(y − 1) sinx dx− dy = 0

⇒ (y − 1) sinx dx = dy

⇒ (y − 1) sinx =
dy

dx
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⇒ y sinx− sinx =
dy

dx

⇒ − sinx =
dy

dx
− (sinx)y

Now this is in the form as given in equation (5).

Step 1: Find P,Q

P (x) = − sinx, Q(x) = − sinx

Step 2: Find the integrating factor

u(x) = e
∫
P (x) dx = e

∫
− sinx dx = ecosx

Step 3: Set up equation (7)

y · u(x) =

∫
Q(x)u(x) dx

⇒ y ecosx︸︷︷︸
u(x)

=

∫
(− sinx)︸ ︷︷ ︸

Q(x)

(ecosx)︸ ︷︷ ︸
u(x)

dx

⇒ yecosx =

∫
−(sinx)ecosx dx︸ ︷︷ ︸

u-sub
(��)

We find (��). Let u = cosx, then du = − sinx. So∫
−(sinx)ecosx dx =

∫
eu du

= eu + C

= ecosx + C

We write
yecosx = ecosx + C

which means

y = 1 +
C

ecosx

Again, the only unknown here is C and you may not replace the 1 with
an arbitrary constant because it is not arbitrary.

3. Find the general solution to

dy

dx
+ 11y = 13.

Solution: Since this is in the correct form, we apply our method.
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Step 1: Find P,Q

P (x) = 11, Q(x) = 13

Step 2: Find the integrating factor

u(x) = e
∫
P (x) dx

= e
∫

11 dx

= e11x

Step 3: Set up equation (7)

y · u(x) =

∫
Q(x)u(x) dx

⇒ y e11x︸︷︷︸
u(x)

=

∫
13︸︷︷︸
Q(x)

(e11x)︸ ︷︷ ︸
u(x)

dx

⇒ ye11x =

∫
13e11x dx

⇒ ye11x =
13

11
e11x + C

⇒ y =
13

11
+

C

e11x

=
13

11
+ Ce−11x

4. Find the general solution to

3x2y + x3y′ = 7 sec2 x tanx.

Solution: This differential equation is not in the proper form to apply
our method, so we make some adjustments.

3x2y + x3y′ = 7 sec2 x tanx

⇒ x3y′ + 3x2y = 7 sec2 x tanx

⇒ y′ +
3x2

x3
y =

7 sec2 x tanx

x3

⇒ y′ +
3

x
y =

7 sec2 x tanx

x3

Now, we can go through our steps.

Step 1: Find P,Q

P (x) =
3

x
, Q(x) =

7 sec2 x tanx

x3
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Step 2: Find the integrating factor

u(x) = e
∫
P (x) dx

= e
∫

(3/x) dx

= e3 ln |x|

= eln |x3|

= |x3| = x3

where we assume that x > 0.

Step 3: Set up equation (7)

y · u(x) =

∫
Q(x)u(x) dx

⇒ y x3

↑
u(x)

=

∫ (
7 sec2 x tanx

x3

)
︸ ︷︷ ︸

Q(x)

x3

↑
u(x)

dx

⇒ x3y =

∫
7 sec2 x tanx dx

To integrate the RHS, we need to make a couple of observations.
First,

7 sec2 x tanx = 7 sec x secx tanx = 7 sec x(secx tanx).

Second,

d

dx
secx = secx tanx.

Hence, to compute∫
7 sec2 x tanx dx =

∫
7 secx(secx tanx) dx,

we need to take w = secx,
dw

dx
= secx tanx and write∫

7 sec(secx tanx) dx =

∫
7w(secx tanx)

(
dw

secx tanx

)
︸ ︷︷ ︸

dx

=

∫
7w dw

=
7

2
w2 + C

=
7

2
sec2 x+ C
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Therefore,

x3y =

∫
7 sec2 x tanx dx

⇒ x3y =
7

2
sec2 x+ C

⇒ y =
7 sec2 x

2x3
+
C

x3





Lesson 10: First Order Linear Differential Equation (II)

1. Solutions to In-Class Examples

Example 1. Suppose a silo contains 50 tons of grain and that a farmer is moving
the grain to another silo. If the amount of grain in the second silo changes at a rate
proportional to the amount of grain in the first silo, find a differential equation that
represents this situation.

Solution: Let y(t) be the amount of grain in the second silo. The amount of
grain in the first silo is given by 50− y(t). Hence, our differential equation becomes

dy

dt
= k(50− y) .

Note 28. Write k ∗ (50− y) in Loncapa.

Example 2. A store has a storage capacity for 50 printers. If the store currently
has 25 printers in inventory and the management determines they sell the printers
at a daily rate equal to 10% of the available capacity, when will the store sell out of
printers?

Solution: Let N(t) be the number of printers in the store’s inventory at t days.
The available capacity of printers is given by 50 − N (which is the total capacity
minus the amount of printers actually in the store). Moreover, our proportionality
constant is k = −.10 (this is negative because we want to sell printers until there
are none left which is to say the number of printers is decreasing). Our differential
equation is given by

dN

dt
= −.10(50−N).

This is a separation of variables problem. We need to get N all on one side and t
all on the other. Write

1

50−N
dN = −.10 dt

⇒
∫

1

50−N
dN =

∫
−.10 dt

⇒ − ln |50−N | = −.10t+ C

⇒ ln |50−N | = .10t −C︸︷︷︸
C or C′

⇒ eln |50−N | = e.10t+C

121
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⇒ |50−N | = Ce.10t

Now, since we are assuming that we will never have more printers than the store’s
capacity, 50−N ≥ 0. So

50−N = Ce.10t ⇒ 50− Ce.10t = N.

We are told that the store originally has 25 printers, which means N(0) = 25.
Thus,

25 = N(0) = 50− Ce.10(0) = 50− C ⇒ C = 25.

So,

N(t) = 50− 25e.10t.

The question asks us to find when the store will sell out of printers, which is to
say we need to find the t such that N(t) = 0. Write

0 = 50− 25e.10t

⇒ −50 = −25e.10t

⇒ 2 = e.10t

⇒ ln 2 = ln e.10t

⇒ ln 2 = .10t

⇒ 10 ln 2 = t.

Therefore, our answer is

t = 10 ln 2 days ≈ 6.931 days.

Example 3. An 850-gallon tank initially contains 250 gallons of brine containing
50 pounds of dissolved salt. Brine containing 4 pounds of salt per gallon flows into
the tank at a rate of 5 gallons per minute. The well-stirred mixture then flows out of
the tank at a rate of 2 gallons per minute. How much salt is in the tank when it is
full? (Round your answer to the nearest hundredth.)

Solution: Let A(t) be the pounds of salt in the tank at time t minutes. Then

dA

dt
= [Rate of salt in]− [Rate of salt out].

[Rate of salt in]:

(
4 lbs

1 gal

)(
5 gal

1 min

)
= 20 lbs/min

[Rate of salt out]:

(
A(t) lbs

250 + (5− 2)t gal

)(
2 gal

1 min

)
=

2A(t)

250 + 3t
lbs/min

Hence, our differential equation is

dA

dt
= 20− 2A(t)

250 + 3t
.
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To find the solution, we use the FOLDE method. However, our differential equation
isn’t quite in the correct form. So we write

dA

dt
= 20− 2A(t)

250 + 3t
⇒ dA

dt
+

2A

250 + 3t
= 20

⇒ dA

dt
+

(
2

250 + 3t

)
A = 20.

Now, since this is now in the right form we can go through the steps.

Step 1: Find P,Q

P (t) =
2

250 + 3t
, Q(t) = 20

Step 2: Find the integrating factor

Recall the integrating factor is given by u(t) = e
∫
P (t) dt.

We need to integrate P (t). Write∫
P (t) dt =

∫
2

250 + 3t
dt

=
2

3
ln |250 + 3t|

= ln(250 + 3t)2/3.

Thus
u(t) = eln(250+3t)2/3 = (250 + 3t)2/3.

Step 3: Set up equation (7)

A · u(t) =

∫
Q(t)u(t) dt.

Plugging in what we know, we have

A (250 + 3t)2/3︸ ︷︷ ︸
u(t)

=

∫
20︸︷︷︸
Q(t)

(250 + 3t)2/3︸ ︷︷ ︸
u(t)

dt =

(
3

5

)(
20

3

)
︸ ︷︷ ︸

4

(250 + 3t)5/3 + C.

Dividing both sides by u(t) = (250 + 3t)2/3,

A = 4(250 + 3t) +
C

(250 + 3t)2/3
.

We need to find C. We are told that the initial amount of salt in the tank is 50
pounds, so

50 = A(0) = 4(250) +
C

2502/3
⇒ C = −2502/3(950).

We leave this in the exact form and our equation becomes

A(t) = 4(250 + 3t)− (250)2/3(950)

(250 + 3t)2/3
.
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Now, we aren’t quite done. We want to find A(t) for the t at which the tank is
full. Since the amount of liquid in the tank is given by 250 + 3t, we write

850 = 250 + 3t ⇒ 600 = 3t ⇒ t = 200.

Thus, the tank is full when t = 200. Finally,

A(200) = 4(250 + 600)− (250)2/3(950)

(250 + 600)2/3
≈ 2,979.85 lbs .

2. Additional Examples

Examples.

1. Suppose the height of a particular plant is given by the function h(t) where t
is measured in days. If the plant grows at a rate of h′ = th+ t inches per day,
how long will it take for the plant to grow to 3 feet? (Round your answer to
the nearest hundredth.)

Solution: Observe that the height of the plant is measured in inches,
which means we are asked to find the t such that h(t) = 36. Now,

h′ = th+ t ⇒ h′ − th = t

is a FOLDE and so we apply our method.

Step 1: Find P,Q

P (t) = −t, Q(t) = t

Step 2: Find the integrating factor

u(t) = e
∫
P (t) dt = e

∫
−t dt = e−t

2/2

Step 3: Set up equation (7)

h · u(t) =

∫
Q(t)u(t) dt

⇒ he−t
2/2 =

∫
t · e−t2/2 dt

= −e−t2/2 + C

⇒ h = −1 + Cet
2/2

Since we may assume that h(0) = 0, we see that

0 = −1 + Ce0 = −1 + C ⇒ C = 1.

Thus,

h(t) = −1 + et
2/2.
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We need to solve h(t) = 36 for t:

36 = −1 + et
2/2

⇒ 37 = et
2/2

⇒ ln 37 = t2/2

⇒ 2 ln 37 = t2

⇒ (2 ln 37)1/2 = t.

We conclude it takes t = (2 ln 37)1/2 ≈ 2.69 days .

2. A 10,000 ft3 room initially has a radon level of 910 picocuries/ft3. A ventila-

tion system is installed that brings in 450 ft3 of air per hour which contains
10 picocuries/ft3, while an equal quantity of well-mixed air leaves the room
each hour. Set up and use a differential equation to determine how long it
will take for the room to reach a safe-to-breathe level of 100 picocuries/ft3.
(Round your answer to the nearest hundredth.)

Solution: This is an extremely tricky problem and it takes a lot of pa-
tience for both the set up and solution.

First, we should notice that, in principle, this should be very similar to
the tank problem because it involves quantities entering, mixing, and leaving
a space.

Let r(t) be the amount of radon (in picocuries) per ft3 per hour (note
that this is different than the total amount of radon in the room per hour).
Our setup should look like

r′(t) = [Rate of Radon/ft3 in]− [Rate of Radon/ft3 out].

This is a little difficult to work with because none of our information is really
given in picocuries/ft3 per hour. So let’s write it as

r′(t) =
[Rate of Total Radon in]− [Rate of Total Radon out]

Total ft3 in Room

=
[Rate of Total Radon in]− [Rate of Total Radon out]

10,000
.

[Rate of Total Radon in]: There are 10 picocuries of radon entering the

room per ft3 of air per hour, we write this as(
10 picocuries

1 ft3

)(
450 ft3

1 hour

)
=

4,500 picocuries

1 hour
= 4,500 picocuries/hour.

This is the total amount of radon entering the room per hour.

[Rate of Total Radon out]: We are told that 450 ft3 of well-mixed air

leaves the room per hour. This is represented by
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(
total radon in room in picocuries

10,000 ft3

)(
450 ft3

1 hour

)
.

But observe that

r(t) =
total radon in room in picocuries

10,000 ft3 .

Hence, the rate out is just(
total radon in room in picocuries

10,000 ft3

)
︸ ︷︷ ︸

r(t)

(
450 ft3

1 hour

)
= 450r(t) picocuries/hour

Putting this all together, we have

r′(t) =
[Rate of Total Radon in]− [Rate of Total Radon out]

10,000

=
4,500− 450r(t)

10,000

=
4,500

10,000
− 450r(t)

10,000

=
9

20
− 9r(t)

200

Therefore, our differential equation is

r′(t) =
9

20
− 9r(t)

200
.

But we aren’t done yet, because we are asked to find the t such that
r(t) = 100. So we must solve this differential equation.

This is a FOLDE, but it isn’t quite in the correct form yet, so we write

r′(t) +
9r(t)

200
=

9

20
.

Now, we can use our steps to solve it.

Step 1: Find P,Q

P (t) =
9

200
, Q(t) =

9

20

Step 2: Find the integrating factor

u(t) = e
∫
P (t) dt

= e
∫

9
200

dt

= e9t/200
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Step 3: Set up equation (7)

r(t) · u(t) =

∫
Q(t)u(t) dt

⇒ r(t) e9t/200︸ ︷︷ ︸
u(t)

=

∫ (
9

20

)
︸ ︷︷ ︸
Q(t)

e9t/200︸ ︷︷ ︸
u(t)

dt

⇒ r(t)e9t/200 = 10e9t/200 + C

⇒ r(t) = 10 +
C

e9t/200

We were told that r(0) = 910. This is to say that

910︸︷︷︸
r(0)

= 10 +
C

e0
= 10 + C

and so we conclude C = 900. Hence

r(t) = 10 + 900e−9t/200.

Finally, we want to find t such that r(t) = 100. We write

10 + 900e−9t/200 = 100

⇒ 900e−9t/200 = 90

⇒ e−9t/200 =
1

10

⇒ ln(e−9t/200) = ln

(
1

10

)
⇒ − 9

200
t = ln

(
1

10

)
⇒ t = −200

9
ln

(
1

10

)
≈ 51.17 hours .

3. A corporation is initially worth 6 million dollars and is growing in value. Let
V denote the value of the company. Suppose V is growing by 22% each year
and is additionally gaining 24% of a growing market estimated at 100e.22t

million dollars, where t is the number of years the company has existed.
Approximate the value of the company after 7 years. (Round to the nearest
million dollars.)

Solution: Let V (t) be the value of the company in millions of dollars
after t years of existence. We are told that V is changing in the following
ways:

– it is growing by 22% each year

– it is gaining 24% of a market estimated to be 100e.22t
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Thus, we write

dV

dt
= .22V︸︷︷︸

22% of
current value

+ .24
(
100e.22t

)︸ ︷︷ ︸
24% of

emerging market

= .22V + 24e.22t

This is a FOLDE but is not quite in the correct form. We write

dV

dt
= .22V + 24e.22t ⇒ dV

dt
− .22V = 24e.22t.

We go through our steps:

Step 1: Find P,Q

P (t) = −.22, Q(t) = 24e.22t

Step 2: Find the integrating factor

u(t) = e
∫
P (t) dt

= e
∫

(−.22) dt

= e−.22t

Step 3: Set up equation (7)

V (t) · u(t) =

∫
Q(t)u(t) dt

⇒ V (t) (e−.22t)︸ ︷︷ ︸
u(t)

=

∫
(24e.22t)︸ ︷︷ ︸

Q(t)

(e−.22t)︸ ︷︷ ︸
u(t)

dt

=

∫
24e.22t−.22t dt

=

∫
24e0 dt

=

∫
24 dt

V (t)e−.22t = 24t+ C

⇒ V (t) =
24t+ C

e−.22t

= e.22t(24t+ C)

We are given that V (0) = 6, and so

6 = e.22·0︸︷︷︸
1

(24(0)
↑
0

+ C) = C.

Hence,
V (t) = e.22t(24t+ 6).
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Therefore, after 7 years, the company is worth approximately

V (7) = e.22·7(24 · 7 + 6) ≈ 812 million dollars .

4. Find the integrating factor of

(sin 2x)y′ − 2(cot 2x)y = − cos 2x, 0 < x <
π

4
.

Solution: The 0 < x <
π

4
is only meant to indicated where a valid

solution exists as a function. We do not explicitly use this information.

First, recall that cot 2x =
cos 2x

sin 2x
. So we are really looking at

(sin 2x)y′ − 2

(
cos 2x

sin 2x

)
y = − cos 2x.

Second, this is a FOLDE but it isn’t in quite the correct form. Divide both
sides by sin 2x to get

y′ − 2

(
cos(2x)

(sin(2x))(sin(2x))

)
y = −cos(2x)

sin(2x)

⇒ y′ − 2

(
cos(2x)

sin2(2x)

)
y = −cos(2x)

sin(2x)

In this form, it is clear that

P (x) = −2

(
cos(2x)

sin2(2x)

)
.

Because our goal is to find the integrating factor, we need only determine
P (x). The integrating factor u(x) is given by the formula

u(x) = e
∫
P (x) dx.

So we will need to find∫
P (x) dx =

∫
−2

(
cos(2x)

sin2(2x)

)
dx.

This is a substitution problem, but we don’t want to use u since we are using
u(x) to mean the integrating factor.

Let t = sin(2x), then dt = 2 cos(2x) dx, which means∫
−2

(
cos(2x)

sin2(2x)

)
dx =

∫
− 1

t2
du

=
1

t

=
1

sin(2x)

= csc(2x)
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Therefore, our integrating factor is

u(x) = e
∫
P (x) dx = ecsc 2x .

5. Find the general solution to

(x− 4)y′ + y = x2 + 4.

Solution: This is not in the correct form for us to apply equation (7).
We divide everything by x− 4 to get

y′ +
1

x− 4
y =

x2 + 4

x− 4

Next, we go through our steps.

Step 1: Find P,Q

P (x) =
1

x− 4
, Q(x) =

x2 + 4

x− 4

Step 2: Find the integrating factor

u(x) = e
∫
P (x) dx

= e
∫

1/(x−4) dx

= eln |x−4|

= |x− 4| = x− 4

where we assume that x > 4.

Step 3: Set up equation (7)

y · u(x) =

∫
Q(x)u(x) dx

⇒ y (x− 4)︸ ︷︷ ︸
u(x)

=

∫ (
x2 + 4

x− 4

)
︸ ︷︷ ︸

Q(x)

(x− 4)︸ ︷︷ ︸
u(x)

dx

⇒ (x− 4)y =

∫
(x2 + 4) dx

⇒ (x− 4)y =
1

3
x3 + 4x+ C

⇒ y =

1

3
x3 + 4x+ C

x− 4



Lesson 11: Area Between Two Curves

1. Area between Two Curves

We know how to find the area under a curve. Today we determine how to find
the area of a region bounded by two or more curves.

Ex 1. We know how to find the area underneath f(x) = 1− x2.

This is just the integral ∫ 1

−1

(1− x2) dx.

But what if we wanted to find the area between f(x) = 1 − x2 and g(x) = x2?
Consider the following graph:

Taking a moment to think about it, it should be clear that if we take the area
under the curve f(x) = 1− x2 and subtract the area under the curve g(x) = x2, then
we should get the purple area. We can represent this visually as follows:
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= −

Although this gives the right idea visually, it isn’t clear from the picture exactly
what the area is as a number. To find the area between curves algebraically, we need
two things: (1) where the functions intersect (if they do at all) and (2) which function
is “larger”.

(1) To determine where the functions intersect, set them equal to each other:

x2 = 1− x2

⇒ 2x2 = 1

⇒ x2 =
1

2

⇒ x = ± 1√
2
.

Thus, our functions intersect at ± 1√
2

. Next, we need to determine which is

function is larger on the interval

[
− 1√

2
,

1√
2

]
.

(2) To determine which function is larger, we need only check a single point

between − 1√
2

and
1√
2

(think about why this is true). For convenience, we

can check x = 0. Plugging in x = 0, the function 1−x2 is clearly larger than
x2.

From this information, we can setup our integral:∫ 1√
2

− 1√
2

(1− x2) dx

↑
larger function

−
∫ 1√

2

− 1√
2

x2 dx

↑
smaller function

=

∫ 1√
2

− 1√
2

[1− x2 − x2] dx.

Check on your own that this integral is equal to
2
√

2

3
.

In general, the area between f(x) and g(x) is given by∫ xR

xL

f(x) dx−
∫ xR

xL

g(x) dx =

∫ xR

xL

[f(x)− g(x)] dx

where f(x) > g(x) on the interval xL ≤ x ≤ xR.
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Note 29. We need to choose the correct “larger” function, else our area will be
negative.

Ex 2. We can also find the area between two functions of y. Consider the functions
F (y) = 8 − y2 and G(y) = y2. Since these are functions of y rather than of x, these
are harder to graph. So we should go about this algebraically.

We apply the same two steps as above:

(1) We set our functions (8 − y2 and y2) equal to each other to see where they
intersect.

y2 = 8− y2

⇒ 2y2 = 8

⇒ y2 = 4

⇒ y = ±2

(2) We check which function is larger on the interval [−2, 2]. Taking the conve-
nient point y = 0, we see that 8−y2 is larger on this interval (note that since
functions of y give x-values, the larger function is the one to the right).

Our integral is then∫ 2

−2

(8− y2) dy −
∫ 2

−2

y2 dy =

∫ 2

−2

(8− y2 − y2) dy.

Note 30. When setting up integrals, consider the following:

(a) Functions of x have x-values for bounds and are integrated with respect to x

(b) Functions of y have y-values for bounds and are integrated with respect to y

Examples.

1. Find the area between the curves

y =
√
x, y =

√
x+ 16, 0 ≤ x ≤ 9.

Solution: Here, we are given the bounds over which to integrate, so we
need only determine which function is larger on that interval. Consider the
following graph:
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By the graph, we see that
√
x+ 16 is the larger function. Therefore, the

area between the curves is given by∫ 9

0

[√
x+ 16−

√
x
]
dx =

(
2

3

)
(x+ 16)3/2 −

(
2

3

)
(x)3/2

∣∣∣∣9
0

=

(
2

3
(9 + 16)3/2 − 2

3
(9)3/2

)
−
[

2

3
(16)3/2 − 2

3
(0)3/2

]
=

2

3
(25)3/2 − 2

3
(27)− 2

3
(64)

=
2

3
[125− 27− 64]

=
2

3
(34)

=
68

3

Remark 31. Observe that if we went about this algebraically, we would
have written

√
x =
√
x+ 16 which has no solutions. What does this mean?

It means the functions never intersect and thus one function is always larger
than the other function.

2. Find the area between

y = sinx+ 2, y = cosx+ 2, 0 ≤ x ≤ π.

Solution: The problem has given us the interval over which we should
integrate, so we may focus only on x-values in the interval [0, π]. For this
problem, sketching the picture gives the most intuition about what is hap-
pening although we will ultimately need to use algebra to set up the integral.
Consider the following graph:
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We see that on one part of the interval, cosx+2 is larger than sinx+2, but
not on the rest of the interval. We need to determine where these functions
intersect (so that we know the point at which the functions switch positions).
Write

cosx+ 2 = sinx+ 2 ⇒ cosx = sinx

Now, if we think about the unit circle, cosx = sinx for 0 ≤ x ≤ π when

x =
π

4
. If we had not graphed this function, this extra point of intersection

(in addition to the interval they gave us) would imply that we need to split
the integral into two different intervals and, on each interval, check which
function is larger.

Quickly checking which function is larger where (try the points x = 0

and x =
π

2
), our area is given by∫ π/4

0

[(cosx+ 2)− (sinx+ 2)] dx+

∫ π

π/4

[(sinx+ 2)− (cosx+ 2)] dx

=

∫ π/4

0

(cosx− sinx) dx+

∫ π

π/4

(sinx− cosx) dx

= sinx+ cosx

∣∣∣∣π/4
0

+ (− cosx− sinx)

∣∣∣∣π
π/4

=
[(

sin
π

4
+ cos

π

4

)
− (sin 0 + cos 0)

]
+
[
(− cosπ − sin π)−

(
cos

π

4
− sin

π

4

)]
=

[(√
2

2
+

√
2

2

)
− 1

]
+

[
1−

(
−
√

2

2
−
√

2

2

)]

=
2
√

2

2
− 1 + 1 +

2
√

2

2

=
4
√

2

2
= 2
√

2

3. Find the area bounded by

x = y2 − y, x+ y = 1.

Solution: We quickly rewrite the given information as

x = y2 − y, x = 1− y.
Here, we are not given the bounds over which we should integrate, which
means we need to integrate between where the functions intersect. To find
where they intersect, write

y2 − y = 1− y

⇒ y2 = 1

⇒ y = ±1
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Thus, we are integrating from −1 to 1. We need to see which function is
larger than the other in this interval. Check y = 0:

x(0) = 02 − 0 = 0

x(0) = 1− 0 = 1

Thus, we see x = 1− y is larger than x = y2− y between y = −1 and y = 1.
So the area is given by∫ 1

−1

[(1− y)− (y2 − y)] dy =

∫ 1

−1

[1− y2] dy

= y − 1

3
y3

∣∣∣∣1
−1

= 1− 1

3
(1)3 −

[
(−1)− 1

3
(−1)3

]
= 1− 1

3
−
[
−1 +

1

3

]
= 2− 2

3

=
4

3

2. Additional Examples

Examples.

1. Find the equation of the vertical line that divides the area of the region R
bounded by

y = x, y = 5x, y = 6− x
in half.

Solution: Recall that a vertical line is given by the equation x = a where
a is some number. To start this problem, we should sketch a graph:
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Before we can determine which vertical line divides the of R in half, we
need to find the area of the R. Observe that the area in this triangle is given
in two parts: the region trapped between y = x and y = 5x and the region
trapped between y = x and y = 6− x.

To compute the area of R, we first need to compute the area of the purple
region, then the area of the yellow region, and add these values together.
Observe we are integrating with respect to x, which means our bounds will
be x-values.

Purple Region: This is the region between y = x and y = 5x. These
functions clearly intersect at x = 0. Next, we observe that

5x = 6− x
⇒ 6x = 6

⇒ x = 1

This is pertinent because when x = 1, we are no longer describing the purple
region but rather the yellow region.

The area of the purple region is given by∫ 1

0

[5x− x] dx =

∫ 1

0

4x dx

= 2x2

∣∣∣∣1
0

= 2(1)2 − 2(0)2 = 2

Yellow Region: The two curves describing this region are y = x and
y = 6−x. We see that they intersect when x = 3. Therefore, the area of the
yellow region is given by∫ 3

1

[6− x− x] dx =

∫ 3

1

[6− 2x] dx
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= 6x− x2

∣∣∣∣3
1

= 6(3)− 32 − [6(1)− 12]

= 18− 9− 6 + 1 = 4

We conclude the area of R is 2 + 4 = 6.

We now want to determine for what value a does the vertical line x = a
divide R in half. We have 3 options:

Written in words, we mean

(1) x = a could be in the purple region (then 0 ≤ a < 1)

(2) x = a could be the line that divides R into the purple and yellow regions
(then a = 1)

(3) x = a could be in the yellow region (then 1 < a ≤ 3)

Let’s take a moment to consider: if x = a is in the purple region or if
x = 1, then the area on its left is at most 2 because the entire area of the
purple region is 2. But half of the area of R is 3. So we must have a > 1.
Thus, x = a is in the yellow region.

Now that we know what region x = a lies in, we can put together the
following equation:

(8)

∫ 1

0

4x dx+

∫ a

1

[6− 2x] dx = 3.

What does this mean? The RHS is exactly half of the area of R (because
the area of R is 6). The LHS include the area of the purple region and the
area of the yellow region up to the line x = a:
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Now, we know that ∫ 1

0

4x dx︸ ︷︷ ︸
area of

purple region

= 2.

So, our equation (8) becomes

2 +

∫ a

1

[6− 2x] dx = 3 ⇒
∫ a

1

[6− 2x] dx = 1.

Integrating, we have∫ a

1

[6− 2x] dx = 6x− x2

∣∣∣∣a
1

= 6(a)− a2 − [6(1)− (1)2]

= 6a− a2 − 6 + 1

= 6a− a2 − 5

= −a2 + 6a− 5.

Thus, we have ∫ a

1

[6− 2x] dx = 1

⇒ −a2 + 6a− 5 = 1

⇒ −a2 + 6a− 6 = 0

Applying the quadratic formula, we get two potential values for a:

a = 3−
√

3 or a = 3 +
√

3.
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Because x = a is in the yellow region, we must have 1 < a ≤ 3. Thus we

choose a = 3−
√

3 and conclude the vertical line which cuts region R in half
is

x = 3−
√

3 .

Note 32. You could have also approached this by focusing on the right
side of R and writing ∫ 3

a

[6− 2x] dx = 3.

2. A company reports that profits for the last fiscal year were 14.2 million
dollars. Given that t is the number of years from now, the company predicts
that profits will grow for the next 7 years at a continuous annual rate between
3.6% and 5.8%. Estimate the cumulative difference in predictive total profits
over the 7 years based on the predictive range of growth rates. Round to 3
decimal places.

Solution: The key to this question is recalling that continuous annual
growth is given by

A(t) = Pert

where P is the invested amount, r is the rate, and t is time in years. Here, we
are investing 14.2 million dollars. Because we want the cumulative difference,
we are really asked to find the difference over 0 ≤ t ≤ 7 between the functions

f(x) = 14.2e.036t and g(x) = 14.2e.058t.

Observe that g(x) is larger than f(x) for all values between 0 ≤ t ≤ 7. Hence,
we need only compute∫ 7

0

[14.2e.058t − 14.2e.036t] dt.

We write∫ 7

0

14.2[e.058t − e.036t] dt

= 14.2

(
1

.058
e.058t − 1

.036
e.036t

) ∣∣∣∣7
0

= 14.2

[(
1

.058
e.058·7 − 1

.036
e.036·7

)
−
(

1

.058
e.058·0 − 1

.036
e.036·0

)]
≈ 9.564 million dollars

3. Find the area of the triangular region bounded by the y-axis and the curves

y = −x and y = −7x+ 6.

Solution: We begin by sketching a picture of the region:
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We see that y = −7x+6 is the larger function, so we need only determine
the bounds. One bound is clearly x = 0. To find the other, we set y = −7x+6
equal to y = −x.

−7x+ 6 = −x
⇒ −6x+ 6 = 0

⇒ −6x = −6

⇒ x = 1

Thus, the area is given by∫ 1

0

[−7x+ 6− (−x)] dx =

∫ 1

0

[−6x+ 6] dx

= −3x2 + 6x

∣∣∣∣1
0

= −3(1)2 + 6(1)−
[
−3(0)2 + 6(0)

]
= −3 + 6

= 3

4. Find the area of the region bounded by

y = 5x4 − 5x2 and y = 10x2

to the right of the y-axis.

Solution: We determine where the functions intersect and then alge-
braically determine which is larger for x ≥ 0 (since we area only consider
the region to the right of the y-axis). Setting these functions equal to each
other:

5x4 − 5x2 = 10x2

⇒ 5x4 − 15x2 = 0
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⇒ 5x2(x2 − 3) = 0

which implies that either x = 0 or x = ±
√

3. Again, we only take x ≥ 0, so

our bounds are x = 0 and x =
√

3.

Next, we determine which function is larger on [0,
√

3]. Since
√

3 > 1, we
check the point x = 1.

5(1)4 − 5(1)2 = 5− 5 = 0

10(1)2 = 10

Hence, we conclude that y = 10x2 is the larger function on this interval.

The area of this region is therefore∫ √3

0

[
10x2 −

(
5x4 − 5x2

)]
dx =

∫ √3

0

[15x2 − 5x4] dx

=
15

3
x3 − 5

5
x5

∣∣∣∣
√

3

0

= 5x3 − x5

∣∣∣∣
√

3

0

= 5(
√

3)3 − (
√

3)5 − [5(0)3 − (0)5]

= 5(3)
√

3− 9
√

3

= 15
√

3− 9
√

3

= 6
√

3



Lesson 12: Volume of Solids of Revolution (I)

1. Disk Method

Solids of revolution are 3-dimensional shapes that come from regions in the xy-
plane revolved about a line. Spheres, cones, and cylinders are all examples of solids
of revolution. A particularly interesting aspect of solids of revolution is that we can
compute their volume. In fact, using the techniques learned today, we can derive the
formula for volume of a generic sphere or cone (although this particular application
is not explored in this class).

Ex 1. Consider the function f(x) = sinx [on left] on the interval from 0 to π
revolved about the x-axis [on right]:

Figure 3. f(x) = sin(x) for 0 ≤ x ≤ π revolved about the x-axis

Our solid of revolution on the right is a sort of lemon shape but we do not have an
explicit formula that gives the volume. Our goal is to find a method of determining
volume for these types of objects.

The idea is this: slice the solid into very thin disks. The volume of any disk is
given by πr2w where r is the radius and w is the width of the disk. Because we are
slicing our object very thinly, the width of each disk will be dx (which is something
we always think of as very small). Once we find the volume of all these thin disks,
we add them up using an integral.

The technical details of this type of problem boils down to determining the radius
of each disk, which is the difference of the function and the line of revolution. For
this example, the radius of each disk is sin x because, if we are revolving about the
x-axis, the radius of each disk is just the height of the function. If we know the radius

143
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Figure 4. An example thin disk.

is sin x and the width is dx, our formula for disks gives

Volume =

∫ π

0

π(sinx
↑

radius

)2 dx
↑

width

.

This method of finding the volume is called the disk method and is given by the
formula

Volume =

∫ xR

xL

π(f(x))2 dx

where xL is the bound to the left, xR is the bound to the right, and f(x) is the
function we are revolving about the x-axis.

Examples.

1. Find the volume of the solid obtained by revolving the region enclosed by
the curves

y = x, x = 0, x = 10, and y = 0

about the x-axis.

Solution: If we sketch a picture, this becomes quite easy.
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The lower bound is x = 0, the upper bound is x = 10, and the function
is f(x) = x, so the volume is given by

Volume = π

∫ 10

0

( x
↑

radius

)2 dx
↑

width

= π

∫ 10

0

x2 dx

=
π

3
x3

∣∣∣∣10

0

=
π

3
(1000)

2. Find the volume of the solid generated by revolving the given region in the
first quadrant about the y-axis:

y = x2, x = 0, and y = 4.

Solution: There is a big difference between this problem and Example
1. Here, we are revolving about the y-axis, not the x-axis. Be sure to read

each question carefully so you know where you are revolving the region.

We sketch a picture of the graph:

Because we are revolving about the y-axis, the radius is not x2. In this
situation, we are integrating with respect to y, which means the radius is
actually a function of y. How do we determine this function? Well,

y = x2 ⇒ x =
√
y.

Our sketch doesn’t change but the labeling does:
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Now, we write

Volume =

∫ 4

0

π(
√
y
↑

radius

)2 dy
↑

width

= π

∫ 4

0

(
√
y)2 dy

= π

∫ 4

0

y dy

=
π

2
y2

∣∣∣∣4
0

=
π

2
(4)2

= 8π

The disk method about the y-axis is given by

Volume =

∫ yT

yB

π(g(y))2 dy

where yB is the bottom bound, yT is the top bound, and g(y) is the function
we are revolving about the y-axis.

Note 33. If we are revolving around the x-axis, the radius is y = f(x).
If we are revolving around the y-axis, the radius is x = g(y). But just as
before with integration: functions of x have bounds in x and functions of y
have bounds in y.

3. Find the volume of the solid generated by revolving the region enclosed by
the curves

y = secx, y = 0, x = 0, x =
π

4

about the x-axis.
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Solution: This graph is tougher to sketch:

The radius is secx and we have bounds x = 0, x =
π

4
. We write

Volume =

∫ π/4

0

π(secx)2 dx

= π

∫ π/4

0

sec2 x dx

= π tanx

∣∣∣∣π/4
0

= π
[
tan

π

4
− tan 0

]
= π[1− 0]

= π

4. Find the volume of the solid obtained by revolving the region bounded by
y = x− x2 and the x-axis about the x-axis.

Solution: We want to be able to sketch these types of functions quickly
so here are some things to notice about y = x − x2: we can rewrite it as
x − x2 = x(1 − x) which means it has roots at x = 0, x = 1. Further, the
coefficient of x2 is negative, so the parabola will open down. With all this
information, we are able to sketch the graph. However, we don’t need to
draw a picture in this case since the volume is just given by the integral

Volume =

∫ 1

0

π(x− x2)2 dx.

That being stated, for certain problems, we need intuition for how the graph
looks and so taking time to practice drawing graphs for simpler cases is
important. This will be especially true for the next two sections.
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Computing the volume of the solid, we write

Volume =

∫ 1

0

π(x− x2)2 dx

= π

∫ 1

0

(x− x2)(x− x2) dx

= π

∫ 1

0

(x2 − 2x3 + x4) dx

= π

(
1

3
x3 − 2

4
x4 +

1

5
x5

) ∣∣∣∣1
0

= π

(
1

3
− 1

2
+

1

5

)
=

π

30

5. Find the volume of the solid that results by revolving the region bounded by
the curves

y = 3
√

1− x2, y = 0, and x = 0

about the y-axis.

Solution: We are told that y = 3
√

1− x2 but we are revolving about
the y-axis, which means we want to solve for x:

y = 3
√

1− x2

⇒ 1

3
y =
√

1− x2

⇒ 1

9
y2 = 1− x2

⇒ x2 = 1− 1

9
y2
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⇒ x =

√
1− 1

9
y2

Note that formulas of the type

x2

a2
+
y2

b2
= 1

are ellipses. Ellipses always pass through the points

(a, 0), (−a, 0), (0, b), (0,−b).

As it happens, our equation is an ellipse with a = 1 and b = 3. Now, since
we are given the curves y = 0 and x = 0 also bound the region, we assume
we are only talking about the region in the first quadrant. Therefore, our
picture is going to look like

Finally, we write

Vol = π

∫ 3

0

(√
1− 1

9
y2

)2

dy

= π

∫ 3

0

(
1− 1

9
y2

)
dy

= π

(
y − 1

27
y3

) ∣∣∣∣3
0

= π

(
3− 33

27

)
= π (3− 1)

= 2π
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2. Additional Examples

Examples.

1. Find the volume of the solid generated by revolving the region enclosed by
the curves

y =
4

x
, y = 0, x = 9, x = 15

about the x-axis.

Solution: The radius is given by y =
4

x
and so our volume is

Volume =

∫ 15

9

π

(
4

x

)2

dx

=

∫ 15

9

16π

x2
dx

=

∫ 15

9

16πx−2 dx

= 16π

(
1

−2 + 1

)
x−2+1

∣∣∣∣15

9

= 16π

(
1

−1

)
x−1

∣∣∣∣15

9

= −16π

x

∣∣∣∣15

9

= −16π

15
−
[
−16π

9

]
=

16π

9
− 16π

15

=
32π

48

2. Find the volume of the solid generated by revolving the region enclosed by
the curves

x+ y =
21

8
, x = 0, y = 0

about the y-axis.

Solution: Since we are revolving about the y-axis, our function needs to
be a function of y. Hence, our radius is given by

x+ y =
21

8
⇒ x =

21

8
− y.
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But we need bounds. The region described by the curves is a triangle where

clearly the lowest y bounds is y = 0. The upper y bound is where x =
21

8
−y

intersects x = 0 (which is just the y-axis). To find this y-value, we write

0 =
21

8
− y

⇒ y =
21

8

Finally, we set up and compute our volume formula:

Volume =

∫ 21/8

0

π

(
21

8
− y
)2

dy

=

∫ 21/8

0

π

(
21

8
− y
)(

21

8
− y
)
dy

=

∫ 21/8

0

π

((
21

8

)2

− 2

(
21

8

)
y + y2

)
dy

=

∫ 21/8

0

π

(
441

64
− 21

4
y + y2

)
dy

= π

[
441

64
y − 21

8
y2 +

1

3
y3

]21/8

0

= π

[
441

64

(
21

8

)
− 21

8

(
21

8

)2

+
1

3

(
21

8

)3

−
[

441

64
(0)− 21

8
(0)2 +

1

3
(0)3

]]

= π

[
9261

512
− 9261

512
+

1

3

(
9261

512

)]
=

3087π

512





Lesson 13: Volume of Solids of Revolution (II)

1. Washer Method

We continue discussing finding the volume of solids of revolution. We introduce
the washer method. This method is used whenever there is a “gap” between what
we are revolving and where we are revolving.

Ex 1. Suppose we have two functions f(x) = 1− x2 and g(x) = x2 and we want
to revolve the area between them about the x-axis.

We need to take the volume of the disks obtained from revolving f(x) = 1 − x2

about the x-axis and subtract the volume of the disks obtained from revolving g(x) =
x2 about the x-axis:

The volume of a disk with radius 1− x2 is∫ 1/
√

2

−1/
√

2

π(1− x2)2 dx

153
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and the volume of a disk with radius x2 is∫ 1/
√

2

−1/
√

2

π(x2)2 dx.

Thus, the volume of this solid of revolution is given by∫ 1/
√

2

−1/
√

2

π(1− x2)2 dx−
∫ 1/

√
2

−1/
√

2

π(x2)2 dx =

∫ 1/
√

2

−1/
√

2

π
[
(1− x2)2 − (x2)2

]
dx.

Note 34. This is not the same as∫ 1/
√

2

−1/
√

2

π(1− x2 − x2)2 dx

because
(a+ b)2 6= a2 + b2.

To see this, observe that

(2 + 3)2 = 52 = 25 6= 13 = 4 + 9 = 22 + 32.

Setting (a+ b)2 = a2 + b2 is called the Freshman’s Dream and it is incorrect.

The washer method about the x-axis is given by

(9) Volume =

∫ xR

xL

π
[
(Outer Radius)2 − (Inner Radius)2

]
dx.

In Ex 1 above, we see the outer radius was 1− x2 and the inner radius was x2.

The outer radius is the function further from where we are revolving and the
inner radius is the function closer to where we are revolving. Think of the outer
radius as creating the solid and the inner radius as the part we need to remove.

Examples.

1. Find the volume of the solid obtained by revolving the given region about
the x-axis:

y = 1− x2, y = 1− x.

Solution: We sketch a quick graph of this region:
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Our bounds for this region will be 0 ≤ x ≤ 1. Next, we determine the
outer radius and inner radius. Consider

Hence, the outer radius is 1−x2 and the inner radius is 1−x. Therefore,
by equation (9),

Volume =

∫ 1

0

π
[
(1− x2)2 − (1− x)2

]
dx

= π

∫ 1

0

[
(x4 − 2x2 + 1)− (1− 2x+ x2)

]
dx

= π

∫ 1

0

(x4 − 3x2 + 2x) dx

= π

(
1

5
x5 − 3

3
x3 +

2

2
x2

) ∣∣∣∣1
0

= π

(
1

5
− 1 + 1

)
=

π

5

2. Find the volume of the solid generated by revolving the region inside the
circle x2 + y2 = 4 and to the right of the line x = 1 about the y-axis.

Solution: The region should look like:
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To derive this picture, observe that x2 +y2 = 4 describes a circle of radius
2 centered at the origin.

Note 35. x2 + y2 = r2 is a circle of radius r centered at the origin.

Since we are revolving around the y-axis, our bounds must be in terms

of y. So we need to find the y-values where x2 + y2 = 4 intersects x = 1.

This circle intersects the line x = 1, so substituting this into x2 + y2 = 4,

(1)2 + y2 = 4 ⇒ y2 = 3.

This means our bounds will be −
√

3 ≤ y ≤
√

3.

Next, we need to find our outer radius and inner radius. If we look at
our sketch,
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then we see that inner radius is x = 1 and we note that the outer radius will
be a function of y since we are revolving about the y-axis.

Our function is x2 + y2 = 4 and we need to solve for x (because then we
would have a function of y). Write

x2 + y2 = 4

⇒ x2 = 4− y2

⇒ x = ±
√

4− y2.

So we have a choice here, we can take either

x =
√

4− y2 or x = −
√

4− y2.

Well, we want only x ≥ 1, so we take x =
√

4− y2 as our outer radius.

Finally, we can set up our volume function:

Volume =

∫ √3

−
√

3

π

[(√
4− y2

)2

− (1)2

]
dx.

Our final step is to solve this integral. We have

Volume =

∫ √3

−
√

3

π

[(√
4− y2

)2

− (1)2

]
dy

= π

∫ √3

−
√

3

(4− y2 − 1) dy

= π

∫ √3

−
√

3

(3− y2) dy

= π

[
3y − 1

3
y3

]√3

−
√

3

= π

[(
3(
√

3)− 1

3
(
√

3)3

)
−
(

3(−
√

3)− 1

3
(−
√

3)3

)]
= π

[
6
√

3− 2

3
(
√

3)3

]
= π

[
6
√

3− 2

3
(3
√

3)

]
= π

[
6
√

3− 2
√

3
]

= 4
√

3π

Note 36. When we are rotating about the y-axis, the washer method is
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(10) Volume =

∫ yT

yB

π
[
(Outer Radius)2 − (Inner Radius)2

]
dy.

3. Find the volume of the solid that results from revolving the region enclosed
by

y = 4x, x = 1, x = 2, y = 0

about the y-axis. Round your answer to the nearest hundredth.

Solution: Firstly, since we are revolving around the y-axis, we need to
rewrite our function so that it gives us x-values. But this is easy:

y = 4x ⇒ y

4
= x.

Now, we want to sketch a graph. Although this region is very simple, if you
don’t draw the picture correctly, you are going to miss an important detail.

We now need to find the outer radius and inner radius. Observe that
depending on the y-values, the inner radius is given by different functions.
This is difficult to detect algebraically. For problems about solids of revolu-
tion, it is best to sketch a picture (this will require taking time to practice
sketching functions). Not drawing a quick graph may lead to missing key
features of the solid.

To address the issue of different inner radii, we break the region into two
areas such that each area has only one function for its inner radius:
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For Area 1,

we have

Outer Radius : x = 2

Inner Radius : x =
y

4

Bounds : 4 ≤ y ≤ 8

Observe that these bounds are in terms of y because we are revolving about
the y-axis.

For Area 2,
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we have

Outer Radius : x = 2

Inner Radius : x = 1

Bounds : 0 ≤ y ≤ 4

Thus, we get our formula for volume:

Volume =

∫ 4

0

π
[
(2)2 − (1)2

]
dy︸ ︷︷ ︸

Area 2

+

∫ 8

4

π

[
(2)2 −

(y
4

)2
]
dy︸ ︷︷ ︸

Area 1

= π

∫ 4

0

3 dy + π

∫ 8

4

(
4− y2

16

)
dy

= π

[∫ 4

0

3 dy +

∫ 8

4

(
4− y2

16

)
dy

]

= π

[
3y

∣∣∣∣4
0

+

(
4y − 1

48
y3

) ∣∣∣∣8
4

]

= π

[
(3(4)− 3(0)) +

[
4(8)− 1

48
(8)3 −

(
4(4)− 1

48
(4)3

)]]
= π

[
12 + 32− 512

48
− 16 +

64

48

]
= π

[
12 + 16− 448

48

]
= π

[
56

3

]
≈ 58.64

2. Additional Examples

Examples.

1. The equation
x2

9
+
y2

16
= 1 describes an ellipse. Find the volume of the solid

generated by this region being revolved around

(a) the x-axis

(b) the y-axis

Note 37. An ellipse centered at the origin is always given by something

of the form
x2

a
+
y2

b
= 1. Further, this ellipse will go through the points
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(
√
a, 0), (−

√
a, 0), (0,

√
b), (0,−

√
b).

In this case, this means our ellipse will pass through the points

(3, 0), (−3, 0), (0, 4), (0,−4).

So, our picture should look like

Solution:

(a) We want to revolve about the x-axis, which means we should focus on

this region:

Here, we don’t need to use the washer method because the inner
radius is just 0. We do, however, need to determine the outer radius.
Because we are revolving about the x-axis, we need a function of x. So,

we take
x2

9
+
y2

16
= 1 and solve for y. Write

x2

9
+
y2

16
= 1

⇒ y2

16
= 1− x2

9

⇒ y2 = 16− 16

9
x2
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⇒ y =

√
16− 16

9
x2

where we take the positive y-values because we are above the x-axis.

We observe that our bounds are −3 ≤ x ≤ 3. So, our volume is
given by

Volume =

∫ 3

−3

π

(√
16− 16

9
x2

)2

dx

=

∫ 3

−3

π

(
16− 16

9
x2

)
dx

= π

[
16x− 16

27
x3

]3

−3

= π

[(
16(3)− 16

27
(3)3

)
−
(

16(−3)− 16

27
(−3)3

)]
= π [48− 16− (−48 + 16)]

= π[32− (−32)] = 64π

(b) Because we are revolving around the y-axis, we need to focus on this

region:

Again, we can just use the disk method because we only have one
radius. We are revolving around the y-axis, which means we need a
function of y. Write

x2

9
+
y2

16
= 1

⇒ x2

9
= 1− y2

16

⇒ x2 = 9− 9

16
y2
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⇒ x =

√
9− 9

16
y2

where we take the positive x-values because we are to the right of the
y-axis.

Our bounds here are −4 ≤ y ≤ 4, which means our volume is given
by

Volume =

∫ 4

−4

π

(√
9− 9

16
y2

)2

dy

=

∫ 4

−4

π

(
9− 9

16
y2

)
dy

= π

[
9y − 9

16

(
1

3

)
y3

]4

−4

= π

[
9y − 3

16
y3

]4

−4

= π

[(
9(4)− 3

16
(4)3

)
−
(

9(−4)− 3

16
(−4)3

)]
= π

[(
36− 3

16
(64)

)
−
(
−36 +

3

16
(64)

)]
= π [36− 12 + 36− 12] = 48π

Remark 38. The values are for (a) and (b) not the equal even though
they both concern the same ellipse. It’s a very special situation when revolv-
ing a region around the x- and y-axis gives identical volume in both cases.
Be careful to always know where you are asked to revolve.

2. Find the volume of the solid generated by revolving the region by the curves

y = 4x2, x = 1, y = 0

about the y-axis.

Solution: We should sketch a picture:
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By the picture, it is clear that this will be an application of the washer
method. Since we are revolving about the y-axis, we need to rewrite y = 4x2

so that y is the independent variable. Write

y = 4x2

⇒ y

4
= x2

⇒
√
y

2
= x

Relabeling our picture, we have

Now, because we are revolving about the y-axis, our outer radius is x = 1

and our inner radius is x =

√
y

2
:

We need to find the bounds of our integral. We are looking for y-values:

1 =

√
y

2

⇒ 2 =
√
y

⇒ 4 = y

Hence, our integral is

Volume = π

∫ 4

0

[
(1)2 −

(√
y

2

)2
]
dy
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= π

∫ 4

0

[
1− y

4

]
dy

= π

[
y − y2

8

]4

0

= π

[
4− (4)2

8
−
(

0− 02

4

)]
= π [4− 2]

= 2π

3. The shape of a fuel tank for the wing of a jet aircraft is designed by revolving
the region bounded by the function

y =
10

7
x2
√

5− x

and the x-axis, where 0 ≤ x ≤ 5, about the x-axis. Given x and y are in
meters, find the volume of the fuel tank. Round your answer to 2 decimal
places.

Solution: Since this is about the x-axis, we don’t need to make any
changes to the function. We write

V =

∫ 5

0

π

(
10

7
x2
√

5− x
)2

dx

=

∫ 5

0

100π

49
x4(5− x) dx

=

∫ 5

0

100π

49
(5x4 − x5) dx

=
100π

49

[
x5 − 1

6
x6

]5

0

=
100π

49

[
55 − 1

6
(5)6 −

(
05 − 1

6
(0)6

)]
≈ 3339.28 meters





Lesson 14: Volume of Solids of Revolution (III)

1. Revolving about Horizontal and Vertical Lines

We continue to expand our understanding of solids of revolution. The key take-
away from today’s lesson is that finding the volume of a solid of revolution is all about
determining the radii, regardless of where we are revolving our region. Specifically,
we will be revolving around horizontal and vertical lines that are not the x- and y-
axes. Here, we need to think geometrically about how we determine the radii of our
disks. Although this may appear to be a daunting task (revolving about lines that
are not the axes), the idea is essentially the same: the radius is the difference between
the function we are revolving and where we are revolving. The biggest difficulty is
matching x-values with x-values and y-values with y-values.

Examples.

1. Consider the region bounded by the curves

y =
10

x
, y = 0, x = 5, x = 10.

(a) Find the volume of the solid generated by revolving the region about

the line y = 5.

Solution: We sketch a graph to get a geometric understanding of
what is going on.

We are not revolving around the x-axis, but instead the line y = 5
although this is still a horizontal line. We need to be careful with how
we choose our outer radius and inner radius because now it is relative
to y = 5 and not the x-axis.

167



168 LESSON 14: VOLUME OF SOLIDS OF REVOLUTION (III)

Our outer radius is the difference between y = 5 and y = 0 and the

inner radius is the difference between y = 5 and y =
10

x
(think about

how you would draw the disks and determine their radii). Then we use
exactly the same formula as we have been using for the washer method:

Volume =

∫ 10

5

π

(5− 0
↑

outer

)2 −
(

5− 10

x

)
↑

inner

2

 dx.

The only difference between this and the previous methods is determin-
ing the radii, every other aspect remains the same. So,

Volume =

∫ 10

5

π

[
25−

(
25− 100

x
+

100

x2

)]
dx

= π

∫ 10

5

[
100

x
− 100

x2

]
dx

= π

[
100 lnx+

100

x

]10

5

= π

[(
100 ln 10 +

100

10

)
−
(

100 ln 5 +
100

5

)]
= π [100 ln 10 + 10− 100 ln 5− 20]

= π [100(ln 10− ln 5) + 10− 20]

= π[100 ln 2− 10]

(b) Find the volume of the solid generated by revolving the region about

the line x = 5.

Solution: We go about this with very much the same spirit as in
part (a). However, there is a major difference because of where we are
revolving. Observe that this is a vertical line. Consider the graph
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Additionally, we observe that, depending on the y-value, we have differ-
ent outer radii.

So we need to break the graph into Area 1 and Area 2 based on the two
different outer radii functions.

We do want to observe that for either Area 1 or Area 2, the inner
radius is 0 because there’s no “gap” between where we are revolving and
what we are revolving. So we may use the disk method for both areas.

Since we are revolving around the y-axis, we need to solve for x (see

note (40)). Given y =
10

x
, we get x =

10

y
.

For Area 1,
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We emphasize that we think of x as a function of y and so the bounds
are y-values. This follows whenever we revolve about a vertical line.
Hence, we get

Radius : x =
10

y
− 5

Bounds : 1 ≤ y ≤ 2

For Area 2,

we get

Radius : x = 10− 5

Bounds : 0 ≤ y ≤ 1

Remark 39. These radii are the differences between the functions
and the line we are revolving about. When in doubt, take the function
you are revolving and where you are revolving and subtract them. The
squaring will take care of any issues with the sign.

Therefore, our volume is given by

Volume =

∫ 1

0

π(10− 5)2 dy︸ ︷︷ ︸
Area 2

+

∫ 2

1

π

(
10

y
− 5

)2

dy︸ ︷︷ ︸
Area 1
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=

∫ 1

0

π(5)2 dy +

∫ 2

1

π

(
10

y
− 5

)2

dy

= π

[∫ 1

0

25 dy +

∫ 2

1

(
100

y2
− 100

y
+ 25

)
dy

]

= π

[
25y

∣∣∣∣1
0

+

(
−100

y
− 100 ln y + 25y

) ∣∣∣∣2
1

]

= π

[
(25− 0) +

(
−100

2
− 100 ln 2 + 25(2)

)
−
(
−100

1
− 100 ln 1 + 25(1)

)]
= π [25− 50− 100 ln 2 + 50 + 100− 25]

= π [100− 100 ln 2]

= 100π(1− ln 2)

2. Let S be the region bounded above by x4y = 16, below by y = 1, on the left
by x = 1, and on the right by x = 2.

(a) Find the volume of the solid generated by revolving S around the line
y = 1.

Solution: Because we are revolving about the line y = 1, we are
revolving about a horizontal line, which means our radius function must

be a function of x. Given x4y = 16, we solve for y to get y =
16

x4
.

Now, the radius is given by
16

x4
− 1 (which is the difference between

the function and the line about which we are revolving) and the bounds
are 1 ≤ x ≤ 2. Note that we don’t need to use the washer method here
because there is no space between the region and where we are revolving.

So our volume is given by

Volume =

∫ 2

1

π

(
16

x4
− 1

)2

dx
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= π

∫ 2

1

(
256

x8
− 32

x4
+ 1

)
dx

= π

[
−256

7x7
+

32

3x3
+ x

]2

1

= π

[(
− 256

7(2)7
+

32

3(2)3
+ 2

)
−
(
− 256

7(1)7
+

32

3(1)3
+ 1

)]
=

587π

21

(b) Find the volume of the solid generated by revolving S around the line
x = 2.

Solution: Here, we are revolving around a vertical line which means
that our radius must be a function of y. We solve for x:

x4y = 16

⇒ x4 =
16

y

⇒ x = 4

√
16

y

⇒ x =
2

y1/4

Thus, our graph looks like

This does require the washer method because there is a “gap” between
the region and the line about which we are revolving. This means

Outer Radius : x = 2− 1

Inner Radius : x = 2− 2

y1/4

Bounds : 1 ≤ y ≤ 16
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Therefore, our volume is given by

Volume =

∫ 16

1

π

[
(2− 1)2 −

(
2− 2

y1/4

)2
]
dy

=

∫ 16

1

π

[
(1)2 −

(
2− 2

y1/4

)2
]
dy

= π

∫ 16

1

[
1−

(
4 +

4

y1/2
− 8

y1/4

)]
dy

= π

∫ 16

1

(
−3− 4

y1/2
+

8

y1/4

)
dy

= π

[
−3y − 8y1/2 +

32

3
y3/4

]16

1

= π

[
−3(16)− 8(16)1/2 +

32

3
(16)3/4 −

(
−3(1)− 8(1)1/2 +

32

3
(1)3/4

)]
= π

[
−48− 8(4) +

32

3
(2)3 + 3 + 8− 32

3

]
=

17π

3

3. Find the volume of the solid generated by the region enclosed by

y = 10− x, y = 0, x = 0, x = 5

revolved about the line x = 10.

Solution: As usual, we sketch a graph of this region.

This is certainly a problem involving the washer method since there is
a gap between the region and where we are revolving. Moreover, the inner
radius differs depending on what y-value we choose. Thus, we need to divide
this region into two areas:
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We also want to note that because we are revolving about a vertical line,
we need to have radius functions as functions of y. So, we solve for x:

y = 10− x ⇒ x = 10− y.

Our picture is then

For Area 1, we see that

Outer Radius : x = 10− 0

Inner Radius : x = 10− (10− y)

Bounds : 5 ≤ y ≤ 10

and for Area 2,
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Outer Radius : x = 10− 0

Inner Radius : x = 10− 5

Bounds : 0 ≤ y ≤ 5

We put this together to compute the volume:

Volume =

∫ 5

0

π
[
(10− 0)2 − (10− 5)2] dy︸ ︷︷ ︸

Area 2

+

∫ 10

5

π
[
(10− 0)2 − (10− (10− y))2] dy︸ ︷︷ ︸

Area 1

=

∫ 5

0

π
[
(10)2 − (5)2

]
dy +

∫ 10

5

π
[
(10)2 − (y)2

]
dy

= π

[∫ 5

0

(100− 25) dy +

∫ 10

5

(
100− y2

)
dy

]
= π

[∫ 5

0

(75) dy +

∫ 10

5

(100− y2) dy

]

= π

[
75y

∣∣∣∣5
0

+ 100y − 1

3
y3

∣∣∣∣10

5

]

= π

[
75(5) +

(
100(10)− 1

3
(10)3 −

(
100(5)− 1

3
(5)3

))]
= π

[
375 +

625

3

]
=

1750π

3

Note 40. Revolving about a

• horizontal line — function of x and bounds in x

• vertical line — function of y and bounds in y
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2. Additional Examples

Examples.

1. A propane tank is in the shape that is generated by revolving the region
enclosed by the right half of the graph of

x2 + 4y2 = 16 and the y-axis

about the y-axis. If x and y are measured in meters, find the depth of the
propane in the tank when it is filled to one-quarter of the tank’s volume.
Round you answer to 3 decimal places.

Solution: Our first step is to put the given equation into a more useful
form. Divide through by 16 on both sides to get

x2

16
+

4y2

16
= 1 ⇐⇒ x2

16
+
y2

4
= 1.

This ellipse passes through (see note (37))

(4, 0), (−4, 0), (0, 2), (0,−2).

Thus, our picture looks like

The purple area is the region enclosed by the ellipse and the y-axis.

Now, what are we asked to find? We are asked to find the horizontal line

y = a such that revolving the region enclosed by
x2

16
+
y2

4
= 1, the y-axis,

and the line y = a has only a fourth of the volume as the original tank.
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Let’s first determine the total volume of the tank. Since we are rotating
around the y-axis, our function needs to be in the form x = something. So

x2

16
+
y2

4
= 1

⇒ x2 + 4y2 = 16

⇒ x2 = 16− 4y2

⇒ x =
√

16− 4y2.

We take the positive root because we are considering only x ≥ 0. Hence, the
total volume of the tank is given by∫ 2

−2

π
(√

16− 4y2
)2

dy.

Integrating:∫ 2

−2

π
(√

16− 4y2
)2

dy =

∫ 2

−2

π(16− 4y2) dy

= π

(
16y − 4

3
y3

) ∣∣∣∣2
−2

= π

[
16(2)− 4

3
(2)3 −

(
16(−2)− 4

3
(−2)3

)]
= π

[
32− 32

3
+ 32− 32

3

]
= π

[
64− 64

3

]
=

128π

3
.

But we aren’t done yet. We don’t want the total volume, we want one-
quarter of the volume. This is where the line y = a comes in. We need
to find the a that solves the following equation:∫ a

−2

π
(√

16− 4y2
)2

dy =
1

4

∫ 2

−2

π
(√

16− 4y2
)2

dy︸ ︷︷ ︸
one-quarter of the volume

.

By above, we know that

1

4

∫ 2

−2

π
(√

16− 4y2
)2

dy =
1

4

(
128π

3

)
=

32π

3
.

Hence, we solve

32π

3
=

∫ a

−2

π
(√

16− 4y2
)2

dy
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for a.

So,

32π

3
=

∫ a

−2

π
(√

16− 4y2
)2

dy

= π

(
16y − 4

3
y3

) ∣∣∣∣a
−2

= π

[
16a− 4

3
a3 −

(
16(−2)− 4

3
(−2)3

)]
= π

[
−4

3
a3 + 16a+ 32− 32

3

]
= π

[
−4

3
a3 + 16a+

64

3

]
⇒ 32

3
= −4

3
a3 + 16a+

64

3

⇒ 0 = −4

3
a3 + 16a+

32

3

This is a cubic equation which you can’t factor and so you can’t solve
it by hand. Instead, we find its root via a graphing calculator or Wolfram
Alpha. Here, we have three possible solutions for a:

a ≈ −3.0641778

a ≈ −0.6945927

a ≈ 3.7587705

We use the approximate forms here because each exact form here has an
imaginary number in it and we don’t address those in this class.

We need to think about which of these answers makes sense for how we
have setup our problem: a ≈ −3.0641778 and a ≈ 3.7587705 are outside our
bounds for y (because we are only looking at −2 ≤ y ≤ 2), so we throw those
out. Thus, we are left with a ≈ −0.6945927.

But how does it make sense for the depth from the bottom of the tank to
be a negative number? It doesn’t. However, notice that a is not the depth
from the bottom of the tank. a is just height of a line. The depth from
the bottom of the tank is the difference between a = −0.6945927 and the
bottom of the tank, y = −2. Hence, our answer is

−0.6945927− (−2) = 2− 0.6945927 ≈ 1.305 meters .



Lesson 15: Improper Integrals

1. Motivation

After practicing integration through a variety of applications, we return to some
more theoretical aspects of the topic. Improper integrals address some of the defi-
ciencies of typical definite integration. Until now, we limited ourselves to intervals
of finite length and a function defined everywhere on that interval (i.e., the function
made sense for every point in the interval). Improper integrals allow us to address
(1) where a function might exist for very large numbers or (2) if the function doesn’t
exist at a point in the interval.

Ex 1. Suppose we are modeling how certain particles decay over time and we
know that the energy given off by the particles at any time a is modeled by∫ a

0

10e−10t dt.

We might ask: how much energy is given off from now until the end of time? The
time a would have to keep getting larger and larger, which we might write as a→∞.
How does theis affect the integral?

lim
a→∞

∫ a

0

10e−10t dt =:

∫ ∞
0

10e−10t dt.

This is an improper integral, the improper-ness coming from the fact that [0,∞) is
an interval of infinite length. The symbol “:=” means “is defined to be”.

Improper integrals always involve limits.

Comments on ∞:
• ∞ is not a number, it is an upper bound. All this means is that
∞ is larger than every real number.

• ∞+(−∞) is undefined — this means there is no consistent way to
define what ∞ + (−∞) should be.1 If you are taking the limit and
you get to the point where you have

∞+ (−∞) or −∞+∞,
then you have to go back and redo the limit.

• ∞+ 7 =∞, 3∞ =∞,−17∞ = −∞
Takeaway: ∞ is essentially different than finite things and so it should not
be treated like finite things

179
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2. Review of Basic Limits

Let f(x) be a function and a some real number. Recall that

lim
x→a+

f(x) is a right hand limit where we only consider x > a

lim
x→a−

f(x) is a left hand limit where we only consider x < a

We say a limit exists if
lim
x→a−

f(x) = lim
x→a+

f(x).

We call this shared value lim
x→a

f(x). If f(x) is continuous at a (which, for this class,

will more or less mean a is in the domain of f), then

lim
x→a

f(x) = f(a).

3. Improper Integrals

Examples.

1. Compute

∫ ∞
1

1

x
dx

Solution: Improper integrals only make sense using limits. We make
the following definition:∫ ∞

1

1

x
dx := lim

t→∞

∫ t

1

1

x
dx.

Hence, improper integrals are done in two parts: we first evaluate∫ t

1

1

x
dx

and second take the limit as t→∞.

Write ∫ t

1

1

x
dx = ln |x|

∣∣∣∣t
1

= ln t− ln 1︸︷︷︸
0

= ln t

where we drop the | · | because we are assuming that t > 0.

1Suppose we let ∞+ (−∞) := 0. What issues might this raise? Well, 7 +∞ =∞ but

7 +∞+ (−∞) =∞+ (−∞)

⇒ 7 + (0) = 0

⇒ 7 = 0

So this doesn’t make any sense.
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Next, we take the limit∫ ∞
1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx

= lim
t→∞

ln t

= ∞

We say this integral diverges .

Definition 41. An integral diverges if its limit is ±∞ or DNE.

Note 42. Take time to review the techniques of finding limits of func-
tions.

Basic Limits: for n > 0, k > 0,

lim
t→∞

1

tn
= 0 lim

t→∞

1

et
= 0

lim
t→∞

tn =∞ lim
t→∞

ln t =∞

lim
t→∞

tn

etk
= 0 lim

t→0+
ln t = −∞

lim
t→∞

et
k

tn
=∞ lim

t→∞

1

lnx
= 0

lim
t→a

(cf(t) + g(t)) = c
(

lim
t→a

f(t)
)

+ lim
t→a

g(t)

2. Find

∫ ∞
1

1

x2
dx

Solution: By definition,∫ ∞
1

1

x2
:= lim

t→∞

∫ t

1

1

x2
dx.

So, we compute

∫ t

1

1

x2
dx and then take its limit as t→∞. Write

∫ t

1

1

x2
dx =

∫ t

1

x−2 dx

=
1

−2 + 1
x−2+1

∣∣∣∣t
1

= −x−1

∣∣∣∣t
1

= −1

x

∣∣∣∣t
1
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= −1

t
−
(
−1

1

)
= −1

t
+ 1

Next, we take the limit as t→∞:

lim
t→∞

(
−1

t
+ 1

)
= −(0) + 1 = 1.

Therefore, we say the integral converges and write∫ ∞
1

1

x2
dx = 1 .

Definition 43. An integral converges if its limit is a real number.

3. Determine if ∫ ∞
0

− 3x2e−x
3

dx

converges or diverges. If it converges, find its value.

Solution: We know∫ ∞
0

− 3x2e−x
3

dx := lim
t→∞

∫ t

0

− 3x2e−x
3

dx︸ ︷︷ ︸
u-sub

.

Let u = −x3, then du = −3x2. Further,

u(0) = −(0)3 = 0

u(t) = −(t)3 = −t3

So ∫ t

0

− 3x2e−x
3

dx =

∫ −t3
0

eu du

= eu
∣∣∣∣−t3
0

= e−t
3 − e0

= e−t
3 − 1

=
1

et3
− 1

Therefore,
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∫ ∞
0

− 3x2e−x
3

dx = lim
t→∞

∫ t

0

− 3x2e−x
3

dx = lim
t→∞

(
1

et3
− 1

)
= 0− 1 = −1

So the interval converges and its value is −1 .

4. Determine if ∫ 2

1

1

x− 1
dx

converges or diverges. If it converges, find its value.

Solution: This is different from Examples 1-3 because we are not dealing
with an interval of infinite length. How is this an improper integral? Well, the

function
1

x− 1
doesn’t exist at x = 1 (because then we would be dividing

by 0). For a definite integral to make sense the function must exist on the
entire interval. So what do we do here? We take a limit as x→ 1.

Write ∫ 2

1

1

x− 1
dx := lim

s→1+

∫ 2

s

1

x− 1
dx.

Recall that lim
s→1+

means we are looking at numbers that are getting very

close to 1 but which are all bigger than 1. Why do we care if our numbers
are bigger than 1? Our interval is [1, 2], which means we don’t care about
anything that is less than 1.

As before, we first evaluate

∫ 2

s

1

x− 1
dx and then take the limit.

We have ∫ 2

s

1

x− 1
dx = ln |x− 1|

∣∣∣∣2
s

= ln |2− 1| − ln |s− 1|

= ln(1)︸︷︷︸
0

− ln |s− 1|

= − ln(s− 1)

Why do we drop the | · |? Because we are only interested in s > 1, which
means that s− 1 > 0.

Now, we take the limit:∫ 2

1

1

x− 1
dx = lim

s→1+

∫ 2

s

1

x− 1
dx

= − lim
s→1+

ln(s− 1)
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(2)
= − lim

t→0+
ln(t) where t = s− 1

= −(−∞)

=∞

But as t→ 0, ln(t)→ −∞.

Therefore, we conclude the integral diverges .

5. Determine if ∫ ∞
10

1

x(lnx)2
dx

converges or diverges. If it converges, find its value.

Solution: We write∫ ∞
10

1

x(lnx)2
dx = lim

t→∞

∫ t

10

1

x(lnx)2
dx︸ ︷︷ ︸

u-sub

.

Let u = lnx, then du =
1

x
dx with

u(10) = ln(10)

u(t) = ln t

So ∫ t

10

1

x(lnx)2
dx =

∫ ln t

ln 10

1

u2
du

=

∫ ln t

ln 10

u−1 du

=
1

−2 + 1
u−2+1

∣∣∣∣ln t
ln 10

= −u−1

∣∣∣∣ln t
ln 10

= −1

u

∣∣∣∣ln t
ln 10

= − 1

ln t
−
(
− 1

ln 10

)
=

1

ln 10
− 1

ln t
.

(2) This follows because as s→ 1+, t = s− 1→ 0+.
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Taking the limit, we see that

lim
t→∞

(
1

ln 10
− 1

ln t

)
=

1

ln 10
− 0 =

1

ln 10
.

We conclude the integral converges and∫ ∞
10

1

x(lnx)2
dx =

1

ln 10
.

6. Compute

∫ ∞
0

x

ex
dx.

Write ∫ ∞
0

x

ex
dx =

∫ ∞
0

xe−x dx = lim
t→∞

∫ t

0

xe−x dx.

This is an integration by parts integral. By LIATE,

u = x dv = e−x dx

du = dx v = −e−x

Hence, ∫ t

0

xe−x dx = −xe−x
∣∣∣∣t
0

−
∫ t

0

(−e−x) dx

= −xe−x
∣∣∣∣t
0

− e−x
∣∣∣∣t
0

= (−xe−x − e−x)
∣∣∣∣t
0

= −te−t − e−t −
(
−0(e−0)− e−0

)
= −te−t − e−t + 1

Taking the limit,

lim
t→∞

(−te−t − e−t + 1) = lim
t→∞

(
− t

et
− 1

et
+ 1

)
= 0 + 0 + 1 = 1.

We conclude ∫ ∞
0

x

ex
dx = 1 .
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4. Additional Examples

Examples.

1. Compute

∫ ∞
1

1
6
√
x
dx.

Solution: By definition,∫ ∞
1

1
6
√
x
dx = lim

t→∞

∫ t

1

1
6
√
x
dx.

Now, we integrate

∫ t

1

1
6
√
x
dx:

∫ t

1

1
6
√
x
dx =

∫ t

1

1

x1/6
dx

=

∫ t

1

x−1/6 dx

=

(
1

−1/6 + 1

)
x−1/6+1

∣∣∣∣t
1

=

(
1

5/6

)
x5/6

∣∣∣∣t
1

=

(
6

5

)
x5/6

∣∣∣∣t
1

=
6

5
t5/6 − 6

5
(15/6)

=
6

5
t5/6 − 6

5

Next, we take the limit as t→∞:

lim
t→∞

(
6

5
t5/6 − 6

5

)
=

5

6
· ∞ − 6

5
=∞.

Therefore, we conclude that

∫ ∞
1

1
6
√
x
dx diverges .

2. Determine if ∫ π

0

sec2(x) dx

converges or diverges. If it converges, find its value.

Solution: Again, we are looking at an interval of finite length. Why is

this an improper integral? Recall that sec(x) =
1

cos(x)
and that cos

(π
2

)
= 0.



4. ADDITIONAL EXAMPLES 187

Thus, sec2(x) does not exist on all of the interval [0, π]. We address this by

breaking the interval into two halves:
[
0,
π

2

]
and

[π
2
, π
]

because sec2(x)

exists on both of these intervals sans the point
π

2
.

We have∫ π

0

sec2(x) dx =

∫ π/2

0

sec2(x) dx+

∫ π

π/2

sec2(x) dx

where both integrals on the right are improper integrals. Hence,∫ π/2

0

sec2(x) dx+

∫ π

π/2

sec2(x) dx := lim
s→π

2
−

∫ s

0

sec2(x) dx+ lim
t→π

2
+

∫ π

t

sec2(x) dx.

The antiderivative of sec2(x) is tan(x). So

lim
s→π

2
−

∫ s

0

sec2(x) dx+ lim
t→π

2
+

∫ π

t

sec2(x) dx

= lim
s→π

2
−

tan(x)

∣∣∣∣s
0

+ lim
t→π

2
+

tan(x)

∣∣∣∣π
t

= lim
s→π

2
−
(tan(s)− tan(0)︸ ︷︷ ︸

0

) + lim
t→π

2
+
(tan(π)︸ ︷︷ ︸

0

− tan(t))

= lim
s→π

2
−

tan(s)− lim
t→π

2
+

tan(t).

To determine what tan(x) is doing at x =
π

2
, we consider its graph

Interpreting the graph, we conclude that

lim
s→π

2
−

tan(s) =∞ and lim
t→π

2
+

tan(t) = −∞.

Putting this together,∫ π

0

sec2(x) dx = lim
s→π

2
−

tan(s)− lim
t→π

2
+

tan(t) =∞− (−∞) =∞+∞ =∞.
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We conclude that the integral diverges .

3. Evaluate

∫ ∞
1

10x2

(4x3 + 4)5/2
dx.

Solution: Write

∫ ∞
1

10x2

(4x3 + 4)5/2
dx = lim

t→∞

∫ t

1

10x2

(4x3 + 4)5/2
dx.

We integrate via u-sub. Let u = 4x3 + 4, then
du

dx
= 12x2 ⇒ dx =

du

12x2
.

Then∫ t

1

10x2

(4x3 + 4)5/2
dx =

∫ u(t)

u(1)

10x2

u5/2

(
du

12x2

)
︸ ︷︷ ︸

dx

=

∫ u(t)

u(1)

5

6u5/2
du

=

∫ u(t)

u(1)

5

6
u−5/2 du

=
5

6

(
1

−5/2 + 1

)
u−5/2+1

∣∣∣∣u(t)

u(1)

=
5

6

(
1

−3/2

)
u−3/2

∣∣∣∣u(t)

u(1)

=
5

6

(
−2

3

)
u−3/2

∣∣∣∣u(t)

u(1)

= −5

9
u−3/2

∣∣∣∣u(t)

u(1)

= −5

9
(4x3 + 4)−3/2

∣∣∣∣t
1

= −5

9
(4t3 + 4)−3/2 −

[
−5

9
(4 + 4)−3/2

]
= − 5

9(4t3 + 4)3/2
+

5

9(8)3/2

Next, we take the limit:

lim
t→∞

[
− 5

9(4t3 + 4)3/2
+

5

9(8)3/2

]
= 0 +

5

9(8)3/2
=

5

9(8)3/2
.
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Therefore,

∫ ∞
1

10x2

(4x3 + 4)5/2
dx converges and

∫ ∞
1

10x2

(4x3 + 4)5/2
dx =

5

9(8)3/2
.

4. Evaluate

∫ ∞
1

6e−
√
x

7
√
x
dx.

Solution: We first simplify the function by replacing the roots with frac-
tional exponents and doing a slight rewrite:

6e−
√
x

7
√
x

=
6e−x

1/2

7x1/2
=

6

7
e−x

1/2

x−1/2.

Next, we separate our improper integral into a limit and a proper integral:∫ ∞
1

6

7
e−x

1/2

x−1/2 dx = lim
t→∞

∫ t

1

6

7
e−x

1/2

x−1/2 dx.

We integrate via u-sub. Let u = −x1/2, then
du

dx
= −1

2
x−1/2 ⇒ dx =

−2x1/2du. Substituting and then integrating,∫ t

1

6

7
e−x

1/2

x−1/2 dx =

∫ u(t)

u(1)

6

7
eux−1/2 (−2x1/2 du)︸ ︷︷ ︸

dx

=

∫ u(t)

u(1)

− 12

7
eu du

= −12

7
eu
∣∣∣∣u(t)

u(1)

= −12

7
e−x

1/2

∣∣∣∣t
1

= −12

7

[
e−t

1/2 − e−11/2
]

= −12

7

[
1

et1/2
− 1

e

]
= − 12

7et1/2
+

12

7e

Taking the limit, we have

lim
t→∞

[
− 12

7et1/2
+

12

7e

]
= 0 +

12

7e
=

12

7e
.
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Hence, the integral converges and∫ ∞
1

6

7
e−x

1/2

x−1/2 dx =
12

7e
.

5. Evaluate

∫ 6

4

1
7
√
x− 4

dx.

Solution: Although our bounds don’t include an infinity, this is still an
improper integral because the function we are integrating does not exist at
x = 4. However, before we attempt to integrate, we’ll rewrite the function
so it is easier to manipulate:

1
7
√
x− 4

=
1

(x− 4)1/7
= (x− 4)−1/7.

So our improper integral becomes∫ 6

4

1
7
√
x− 4

dx = lim
s→4+

∫ 6

s

(x− 4)−1/7 dx.

Next, we integrate:∫ 6

s

(x− 4)−1/7 dx =

(
1

−1/7 + 1

)
(x− 4)−1/7+1

∣∣∣∣6
s

=

(
1

6/7

)
(x− 4)6/7

∣∣∣∣6
s

=
7

6
(x− 4)6/7

∣∣∣∣6
s

=
7

6
(6− 4)6/7 − 7

6
(s− 4)6/7

=
7(26/7)

6
− 7

6
(s− 4)6/7

Finally, we apply our limit:

lim
s→4+

[
7(26/7)

6
− 7

6
(s− 4)6/7

]
=

7(26/7)

6
− 0 =

7(26/7)

6
.

We conclude the integral converges and∫ 6

4

1
7
√
x− 4

dx =
7(26/7)

6
.

6. Evaluate

∫ ∞
1

10(x− 1)e−7x dx.

Solution: Write



4. ADDITIONAL EXAMPLES 191

∫ ∞
1

10(x− 1)e−7x dx = lim
t→∞

∫ t

1

10(x− 1)e−7x dx.

This integral requires integration by parts.

By LIATE, take u = x− 1, then our table becomes

u = x− 1 dv = 10e−7x dx

du = dx v = −10

7
e−7x

So,∫ t

1

10(x− 1)e−7x dx = (x− 1)︸ ︷︷ ︸
u

(
−10

7
e−7x

)
︸ ︷︷ ︸

v

∣∣∣∣t
1

−
∫ t

1

(
−10

7
e−7x

)
︸ ︷︷ ︸

v

dx︸︷︷︸
du

= −10

7
(x− 1)e−7x

∣∣∣∣t
1

+
10

7

∫ t

1

e−7x dx

= −10

7
(x− 1)e−7x

∣∣∣∣t
1

− 10

49
e−7x

∣∣∣∣t
1

= −10

7
(x− 1)e−7x − 10

49
e−7x

∣∣∣∣t
1

= −10

7
(t− 1)e−7t − 10

49
e−7t −

[
−10

7
(1− 1)e−7(1) − 10

49
e−7(1)

]
= −10(t− 1)

7e7t
− 10

49e7t
+

10

49e7

Taking the limit,

lim
t→∞

[
−10(t− 1)

7e7t
− 10

49e7t
+

10

49e7

]
= 0 + 0 +

10

49e7
=

10

49e7
.

We conclude that the integral converges and∫ ∞
1

10(x− 1)e−7x dx =
10

49e7
.





Lesson 16: Geometric Series and Convergence (I)

1. Introduction to Series

Series are just sums of things, like numbers or functions.

Ex 1.
3∑

n=1

2n + 1

3n − 2
=

21 + 1

31 − 2︸ ︷︷ ︸
n=1

+
22 + 1

32 − 2︸ ︷︷ ︸
n=2

+
23 + 1

33 − 2︸ ︷︷ ︸
n=3

.

This is summation notation. The
∑

(called “sigma”) means to add a bunch of
things together. The n is called the index and is used to put an ordering on the
sum (so that we can keep track of what we’re adding together). The number under∑

tells us when to start counting and the number above
∑

tells us when to stop
counting.

We can also use series to talk about the sum of an infinite number of things.

Ex 2.
∞∑
n=0

1

n+ 1
:= lim

t→∞

t∑
n=0

1

n+ 1
,

∞∑
n=1

an := lim
t→∞

t∑
n=1

an

Definition 44. We say the nth partial sum is the sum of the first n terms.

Ex 3. Consider
∞∑
n=0

1

n+ 1

The 3rd partial sum is

1

0 + 1
+

1

1 + 1
+

1

2 + 1︸ ︷︷ ︸
3 terms

=
11

6

and the 5th partial sum is

1

0 + 1
+

1

1 + 1
+

1

2 + 1
+

1

3 + 1
+

1

4 + 1︸ ︷︷ ︸
5 terms

=
137

60
.

Definition 45. We say a series converges if the partial sums limit to a finite
number. We say the series diverges otherwise.

193
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Series Facts:

(1) c
∞∑
n=1

an =
∞∑
n=1

can

Ex: 3
∞∑
n=1

1

2n
=
∞∑
n=1

3

2n
and

1

8

∞∑
n=17

3

4n−3
=

∞∑
n=17

3

8(4n−3)

(2)
∞∑
n=0

an =
∞∑
n=m

an−m,
∞∑
n=m

an =
∞∑
n=0

an+m

Ex:

• Given
∞∑
n=0

.6n

n+ 1
, we make this series start at n = 1 by subtracting 1 from

every instance of n:

∞∑
n=0

.6n

n+ 1
=
∞∑
n=1

.6n−1

n

• Given
∞∑
n=3

4(32n)

5n
, we make this series start at n = 0, by adding 3 from every

instance of n:
∞∑
n=3

4(32n)

5n
=
∞∑
n=0

4(32(n+3))

5n+3

2. Geometric Series

A geometric series is a series of the form

∞∑
n=m

crn+k.

Ex 4.

• Geometric Series:
∞∑
n=1

3

7n−1
,

1

8

∞∑
n=0

1

2n

• Not Geometric Series:
∞∑
n=1

1

n3
,
∞∑
n=3

16(−1)n+1n!

4n

Geometric series are special because we can actually compute what the infinite
sum is (which is actually very difficult for any other type of series). In fact, we even
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have a formula for the geometric series: if |r| < 1 then

(11)
∞∑
n=0

crn =
c

1− r
.

If |r| ≥ 1, then the series diverges and we cannot apply this formula.

Remark 46. Simply applying the formula doesn’t mean the series converges. For

example, we may apply equation (11) to the series
∞∑
n=0

(−1)n but this series diverges

because |r| = | − 1| = 1.

Note 47. Make particular note of where the series starts and what power we are
raising r to. To use equation (11), the geometric series must look exactly like the
LHS of equation (11).

Examples.

1. If 17− 34

8
+

51

27
− 68

64
+

85

125
−· · · continues as a pattern, write it in summation

notation.

Solution: We think about the pattern in the numbers. Consider

17− 34

8
+

51

27
− 68

64
+

85

125
− · · ·

= 17

(
1− 2

8
+

3

27
− 4

64
+

5

125
− · · ·

)
= 17

(
1− 2

23
+

3

33
− 4

43
+

5

53
− · · ·

)
= 17

(
(−1)2

13︸ ︷︷ ︸
n=1

+
2(−1)3

23︸ ︷︷ ︸
n=2

+
3(−1)4

33︸ ︷︷ ︸
n=3

+
4(−1)5

43︸ ︷︷ ︸
n=4

+
5(−1)6

53︸ ︷︷ ︸
n=5

+ · · ·
)

= 17
∞∑
n=1

n(−1)n+1

n3
or 17

∞∑
n=1

(−1)n+1

n2
.

2. Compute
∞∑
n=1

(
−1

2

)n
.

Solution: This is a geometric series but it is not in the correct form for
us to apply equation (11) because n does not start at 0. We resolve this by
playing around with the index:

∞∑
n=1

(
−1

2

)n
=
∞∑
n=0

(
−1

2

)n+1
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=
∞∑
n=0

(
−1

2

)
︸ ︷︷ ︸

c

(
−1

2

)n
︸ ︷︷ ︸

rn

← Correct Form

=
−1/2

1− (−1/2)

=
2

2

(
(−1/2)

1 + (1/2)

)
=
−1

2 + 1
= −1

3

3. Compute
∞∑
n=0

4e−2n.

Solution: This is a geometric series, although it might not seem like it.
We rewrite to make this fact more apparent. Consider

∞∑
n=0

4e−2n =
∞∑
n=0

4(e−2)n.

Now, because |e−2| =
∣∣∣∣ 1

e2

∣∣∣∣ < 1 (since e2 > 1), this geometric series converges.

By the geometric series formula,

∞∑
n=0

4(e−2)n =
4

1− e−2
=

4

1− e−2
· e

2

e2
=

4e2

e2 − 1
.

4. Compute
∞∑
n=0

3n+2

4n

Solution: This is also a geometric series, but not in the correct form to
directly apply equation (11). We write

∞∑
n=0

3n+2

4n
=
∞∑
n=0

323n

4n

=
∞∑
n=0

9

(
3n

4n

)

=
∞∑
n=0

9

(
3

4

)n
=

9

1− 3/4
by the equation (11)
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=
9

1/4
= 4 · 9 = 36

5. Compute
∞∑
n=0

(
1

(−3)n
+

6

4n+1

)
.

Solution: We tackle these sorts of problems by splitting up the summa-
tion. Write

∞∑
n=0

1

(−3)n
=
∞∑
n=0

(
−1

3

)n
=

1

1 + 1/3
=

3

4

∞∑
n=0

6

4n+1
=
∞∑
n=0

(
6

4

)(
1

4n

)

=
∞∑
n=0

(
3

2

)(
1

4

)n
=

3/2

1− 1/4

=
3

2

(
4

3

)
=

12

6
= 2

Thus,

∞∑
n=0

(
1

(−3)n
+

6

4n+1

)
=
∞∑
n=0

1

(−3)n
+
∞∑
n=0

6

4n+1
=

3

4
+ 2 =

11

4

6. Compute
∞∑
n=1

3(−1)n

52n

Solution: Again, this is not in the correct form:

∞∑
n=1

3(−1)n

(52)n
=
∞∑
n=0

3(−1)n+1

(52)n+1

=
∞∑
n=0

3

(
− 1

52

)n+1

=
∞∑
n=0

3

(
− 1

52

)(
− 1

52

)n
= − 3

25

(
1

1 + 1/25

)
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= − 3

25

(
25

26

)
= − 3

26

7. Using summation notation, rewrite the number 6.31.

Solution: This problem comes down to interpreting what decimals mean:
6.321 has 6 ones, 3 tenths, 1 hundredths, 1 thousandths etc. We might even
write this as

6.31 = 6
↑

ones

+
3

10
↑

tenths

+
1

100
↑

hundredths

+
1

1,000
↑

thousandths

+
1

10,000
+ · · ·

= 6 +
3

10
+
∞∑
n=0

1

10n+2

= 6 +
3

10
+
∞∑
n=2

1

10n

3. Additional Examples

Examples.

1. Find the fifth partial sum of

∞∑
n=0

16(−1)n+1n!

4n
.

Solution: The fifth partial sum is the sum of the first five terms.
Consult Appendix (F) to check the meaning of n!.

Write

16(−1)0+10!

40
+

16(−1)1+11!

41
+

16(−1)2+12!

42
+

16(−1)3+13!

43
+

16(−1)4+14!

44

=
16(−1)1(1)

1
+

16(−1)2(1)

4
+

16(−1)3(2)

16
+

16(−1)4(6)

64
+

16(−1)5(24)

256

= −16 + 4− 2 +
3

2
− 3

2

= −14

2. Put 12− 24

8
+

36

27
− 48

64
+

60

125
− · · · into summation notation.

Solution: Observe that

12 = 12 · 1, 24 = 12 · 2, 36 = 12 · 3, 48 = 12 · 4, 60 = 12 · 5
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and
1 = 13, 8 = 23, 27 = 33, 64 = 43, 125 = 53.

Further, notice

1 = (−1)1+1, −1 = (−1)2+1, 1 = (−1)3+1, −1 = (−1)4+1, 1 = (−1)5+1.

Putting this all together,

12− 24

8
+

36

27
− 48

64
+

60

125
− · · ·

=
(−1)1+1(12 · 1)

13
+

(−1)2+1(12 · 2)

23
+

(−1)3+1(12 · 3)

33
+

(−1)4+1(12 · 4)

43
+

(−1)5+1(12 · 5)

53
+ · · ·

=
∞∑
n=1

(−1)n+112n

n3
=

∞∑
n=1

12(−1)n+1n

n3





Lesson 17: Geometric Series and Convergence (II)

1. Solutions to In-Class Examples

Example 1. A ball has the property that each time it falls from a height h onto
the ground, it will rebound to a height of rh for some 0 < r < 1. Find the total

distance traveled by the ball if r =
1

3
and it is dropped from a height of 9 feet.

Solution: We draw a picture to get a feel for what is going on.

Notice that other than when we originally drop the ball, at each step the distance
traveled by the ball is doubled because we must include the height the ball rebounds
to and the distance the ball travels as it falls to the ground. The heights the ball
travels are are

9, 3, 3, 1, 1,
1

3
,

1

3
, · · · .

Observe

3 = (9)
1

3
= (9)

(
1

3

)1

1 = (3)
1

3
=

(
(9)

1

3

)
︸ ︷︷ ︸

3

(
1

3

)
= 9

(
1

3

)(
1

3

)
= (9)

(
1

3

)2

.

From this we can determine a pattern: the distance the ball travels is described by

201
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9 + 2
∞∑
n=1

(9)

(
1

3

)n
= 9 + 18

∞∑
n=1

(
1

3

)n
.

This is clearly a geometric series so we use the geometric series formula to compute
this sum. But our series starts at n = 1 (not n = 0), so we can’t apply our formula
just yet. Instead, write

∞∑
n=1

(
1

3

)n
=
∞∑
n=0

(
1

3

)n+1

=
∞∑
n=0

(
1

3

)(
1

3

)n
=

1

3

∞∑
n=0

(
1

3

)n
.

Hence,

9 + 18
∞∑
n=1

(
1

3

)n
= 9 + 18

(
1

3

∞∑
n=0

(
1

3

)n)

= 9 +
18

3

∞∑
n=0

(
1

3

)n
= 9 + 6

(
1

1− 1/3

)
= 9 + 6

(
1

2/3

)
= 9 + 6

(
3

2

)
= 9 +

18

2

= 9 + 9 = 18 feet .

Example 2. Suppose that in a country, 75% of all income the people receive is
spent and 25% is saved. What is the total amount of spending generated in the long
run by a $10 billion tax rebate which is given to the country’s citizens to stimulate
the economy if saving habits do not change? Include the government rebate as part
of the total spending.

Solution: The question is asking us to determine what is spent from now to the
end of time (assuming the pattern holds). Since we are including the government
rebate as part of the spending, we see at time n = 0, $10 billion is spent. But,
according to what they tell us, the citizens then spend 75% of the $10 billion. So at
time n = 1, $10(.75) billion is spent. At time n = 2, the citizens spend $10(.75)(.75) =
$ 10(.75)2 billion and we continue on in this way. Again, we assume the pattern holds
indefinitely.

Our goal is to find the total amount spent (measured in billions), which is the
sum of all that is spent over time n = 0, 1, 2, .... This is described by the summation

10︸︷︷︸
n=0

+ 10(.75)︸ ︷︷ ︸
n=1

+ 10(.75)2︸ ︷︷ ︸
n=2

+ · · · =
∞∑
n=0

10(.75)n = 10
∞∑
n=0

(.75)n.
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Because n = 0 and .75 < 1, we can apply our formula for the geometric series to
determine that the total amount spent (in billions) is

10
∞∑
n=0

(.75)n = 10

(
1

1− .75

)
= 10

(
1

.25

)
= 10(4) = 40 billion .

Example 3. How much should you invest today at an annual interest rate of
4% compounded continuously so that in 3 years from today, you can make annual
withdrawals of $2000 in perpetuity? Round your answer to the nearest cent.

Solution: The question is asking: what do we need to invest today so that every
year, we have $2000 in the bank. The formula for continuously compounded annual
interest is

A = Pert

where r is the interest rate, t is time in years, A is the amount we have in the bank
after t years, and P is the investment we make today. Let P3 be the amount we invest
today so that in 3 years, we have $2000. Then, at the interest rate we are given,

2000 = P3e
.04(3) ⇒ P3 = 2000e−.04(3).

Let P4 be the amount we invest today so that in 4 years, we have $2000. Write

2000 = P4e
.04(4) ⇒ P4 = 2000e−.04(4).

Similarly, for any year n > 3 we can let Pn be the amount we invest today so that
after n years, we have $2000. Then

2000 = Pne
.04(n) ⇒ Pn = 2000e−.04(n).

Where does this leave us? Well, the sum of all these Pn gives the total amount
we need to invest today so that we will always have $2000 in the bank each year
beginning 3 years from now. So

Total = P3 + P4 + P5 + · · · =
∞∑
n=3

2000e−.04(n).

∞∑
n=3

2000e−.04(n) is clearly a geometric series, but it is not in the correct form. We will

need to use the formula for the geometric series but our series is not in the correct
form. Write

∞∑
n=3

2000e−.04(n) =
∞∑
n=3

2000
(
e−.04

)n
=
∞∑
n=0

2000
(
e−.04

)n+3

=
∞∑
n=0

2000
(
e−.04

)3 (
e−.04

)n



204 LESSON 17: GEOMETRIC SERIES AND CONVERGENCE (II)

= 2000e−.04(3)

∞∑
n=0

(
e−.04

)n
.

Now that this is in the correct form and |e−.04| < 1, we can apply the geometric
formula.

The total we invest today is

2000e−.04(3)

∞∑
n=0

(
e−.04

)n
= 2000e−.04(3)

(
1

1− e−.04

)
≈ $45,238.85 .

Example 4. 500 people are sent to a colony on Mars and each subsequent year 500
more people are added to the population of the colony. The annual death proportion
is 5%. Find the eventual population of the Mars colony after many years have passed,
just before a new group of 500 people arrive.

Solution: Let Pk be the population of the colony on Mars at the start of year k.
Then P0 = 500 because 500 people were sent to Mars initially. Moreover,

P1 = 500︸︷︷︸
people sent

to Mars

+ (P0 − .05P0)︸ ︷︷ ︸
population already

on Mars

.

Similarly,
P2 = 500︸︷︷︸

people sent
to Mars

+ (P1 − .05P1)︸ ︷︷ ︸
population already

on Mars

and we continue on in this pattern. But we want a nicer way to write this. Try

P1 = 500 + (P0 − .05P0) = 500 + .95P0 = 500 + .95( 500︸︷︷︸
P0

)

and

P2 = 500+(P1−.05P1) = 500+.95P1 = 500+.95(500 + .95(500)︸ ︷︷ ︸
P1

) = 500+.95(500)+(.95)2(500).

So our pattern is given by
∞∑
n=0

500(.95)n.

This is in the correct form to apply the geometric series formula. So we can write

∞∑
n=0

500(.95)n =
500

1− .95
=

500

.05
= 10,000.

We aren’t quite done though. We were asked to find the population just before
a new group of 500 people arrive. So we need to subtract 500. Thus, our answer is
9,500 .
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2. Additional Examples

1. In a right triangle, a series of altitudes are drawn starting with an altitude
drawn using the vertex of the right angle and drawn towards the hypotenuse.
Then subsequently continuing to draw altitudes from the right angles in
the new right triangles created, and which also include the vertex from the
smallest angle of the original right triangle. The series of altitudes are drawn
so they move closer and closer to the smallest angle in the original right
triangle. Find the sum of the lengths of these altitudes given that one of the
angles of the original triangle is 47◦ and the side of the triangle adjacent to
this angle is 2.7. Round your answer to the nearest hundredth.

Solution: This is the most difficult problem in Math 16020. The biggest
challenge is that, if you compute using the numbers given, it’s very easy to
oversimplify which makes you miss the overarching pattern. Instead of using
the numbers given, we will use variables and then substitute what we are
given at the very end.

The first issue in this problem is understanding what object is being
described. The vertex of a right triangle is the point where the smaller legs
(by legs of a triangle, I mean the two shorter sides of a right triangle) meet
to form the right angle:

The altitude from the vertex of a right triangle is the line starting from
the vertex that makes a right angle with the hypotenuse:

Now, we are drawing a series of altitudes in our triangles which always
contains the smallest angle, which we will call θ. Consider the following
picture:
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We let this right triangle have sides a, b, c where a is opposite θ and c is
the hypotenuse.

Interestingly, we have a very nice formula for the length of an altitude
when compared to the sides of the triangle. For example, if d1 is the length
of the altitude in the triangle abc, then

d1 =
ab

c
.

In general, the length of an altitude of this type is the product of the legs
of the triangle divided by the hypotenuse.

Observe that because

cos θ =
b

c
,

we may conclude that

d1 =
ab

c
= a

(
b

c

)
= a cos θ.

With this in mind, we look at the next altitude in our sequence:

Note that since we are not looking at the original triangle anymore (be-
cause this new altitude isn’t an altitude in the first triangle) we have to be
careful about the lengths of our sides. Here, our new triangle has legs d1, c1,
and hypotenuse b. Observe that b is part of the previous triangle and we
have already computed the length of d1, but we need to determine the length
of c1. Notice that
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cos θ =
c1

b
⇒ b cos θ = c1.

So,

d2 =
d1c1

b
=
d1(b cos θ)

b
= d1 cos θ = (a cos θ)︸ ︷︷ ︸

d1

cos θ = a(cos θ)2.

Next,

In this triangle our altitude is d3, our legs are d2, b1, and our hypotenuse
is c1. We need to compute the length of c1. Since

cos θ =
b1

c1

⇒ b1 = c1 cos θ.

Then, we know that

d3 =
d2b1

c1

=
d2c1 cos θ

c1

= d2 cos θ = (a(cos θ)2)︸ ︷︷ ︸
d2

cos θ = a(cos θ)3.

From this we can determine a pattern. We see that the sum of the lengths
of these altitudes is given by

∞∑
n=1

dn =
∞∑
n=1

a(cos θ)n = a cos θ + a(cos θ)2 + a(cos θ)3 + · · · .

We put this in the correct form to apply the geometric series formula:

∞∑
n=1

a(cos θ)n =
∞∑
n=0

a(cos θ)n+1

=
∞∑
n=0

(a cos θ)(cos θ)n

=
a cos θ

1− cos θ
.

Now that we have the general formula, we need to input the numbers
they have given us.
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After carefully re-reading the problem, we see that a = 2.7 and that
θ = 90◦ − 47◦ = 43◦. Thus, the sum of the lengths of all the altitudes is

2.7 cos(43◦)

1− cos(43◦)
≈ 7.35 .

TL;DR: The geometric series describing this situation is

∞∑
n=1

a(cosx)n+1 = a cosx+ a(cosx)2 + a(cosx)3 + · · ·

where a is the length of the side they give you and x is 90 minus the angle
they give you (so if they give you the angle 60◦, x = 30◦). Note that x must
be measured in degrees. The formula for this sum is

a cosx

1− cosx
.

2. Determine if the series converges; if so, find its sum:

2304

25
− 48

5
+ 1− 5

48
+

25

2304
− · · · .

Solution: Notice that

(
− 5

48

)0

= 1 and that

(
− 5

48

)−1

= −48

5
. Hence,

2304

25
− 48

5
+ 1− 5

48
+

25

2304
− · · ·

=

(
− 5

48

)−2

+

(
− 5

48

)−1

+

(
− 5

48

)0

+

(
− 5

48

)1

+

(
− 5

48

)2

+ · · ·

=
∞∑

n=−2

(
− 5

48

)n

Since |r| =

∣∣∣∣− 5

48

∣∣∣∣ < 1, this series converges . To find its sum, we need

to put our series into the correct form. Write

∞∑
n=−2

(
− 5

48

)n
=
∞∑
n=0

(
− 5

48

)n−2

=
∞∑
n=0

(
− 5

48

)−2(
− 5

48

)n

=

(
− 5

48

)−2

1−
(
− 5

48

)
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=

(
− 5

48

)−2

1 +
5

48

=
110,592

1325





Lesson 18: Introduction to Functions of Several Variables

1. Functions of Several Variables

Today we introduce functions of several variables. For the purposes of this
class, we primarily consider functions with 2 inputs, x and y. For example, how the
weather feels to humans depends on both the temperature and the humidity — two
variables that do not depend on each other. Geometrically, by adding another input,
we are adding another dimension to our graphs which we label z.

We write z = f(x, y), which means that z depends on x and y.

Note 48 (Caution). Before, we would write y = f(x) which means that y is
related to x. Now, we write z = f(x, y), which means z is related to x and y BUT
this does not mean x and y are related to each other. x and y are just the inputs
and will act independently.

Examples.

1. If f(x, y) =
x

ln(2y)
, find f

(
1,
e3

2

)
.

Solution: A good question here is to ask: which input is x and which
is y? Fortunately, we will always write our multivariable functions as z =
f(x, y) so

z = f

(
1
↑
x

,
e3

2
↑
y

)

211
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Thus,

f

(
1,
e3

2

)
=

1

ln
(

2e3

2

) =
1

ln e3
=

1

3
.

2. Find the domain of

f(x, y) =

√
11x− 3y + 2

x
.

Solution: Just as with single variable functions, functions of several vari-
ables can have issues of domain — which is why we ask these sorts of ques-
tions. Fortunately, nothing really changes from the single variable case.

Finding the Domain: We have to check the following three things to make
sure our function is defined.

(1) No dividing by zero

Ex:
1

x+ y
doesn’t exist when x+ y = 0

(2) Even roots have non-negative input

Ex:
√

1 + x+ y has issues whenever x+ y < −1 because
then the input is negative. But 3

√
1 + x+ y has no issues

whatsoever.

(3) ln has positive input

Ex: ln(x+ 2y) doesn’t exist when x+ 2y ≤ 0

Sometimes these 3 things can overlap, for example,

f(x, y) =
1

ln(x+ y)

requires you to check (1) and (3). To not divide by zero, we can’t
have ln(x + y) = 0 ⇒ x + y = 1. To make sure ln(x + y) exists, we
must have x+ y > 0. This means our domain is

{(x, y) : x+ y > 0 and x+ y 6= 1}.

Returning to f(x, y) =

√
11x− 3y + 2

x
, we check (1) and (2). That is,

we must have x 6= 0 and 11x− 3y + 2 ≥ 0 ⇒ 11x− 3y ≥ −2. Our domain
is then

{(x, y) : x 6= 0, 11x− 3y ≥ −2} .

3. Find the domain of

f(x, y) =

√
x− 1

ln(y − 2)− 3
.
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Solution: We need to check (1), (2), and (3).

(1) If ln(y − 2)− 3 = 0, then our function does not exist. This means that

ln(y − 2) = 3 ⇒ y − 2 = e3 ⇒ y = e3 + 2.

So we must exclude y = e3 + 2.

(2) We have an even root, so we need x− 1 ≥ 0 ⇒ x ≥ 1.

(3) For ln(y − 2) to exist, we must have y − 2 > 0 ⇒ y > 2.

Putting this all together, our domain is

{(x, y) : y 6= e3 + 2, x ≥ 1, y > 2} .

4. Find the range of

f(x, y) = 3
√
y + 5x2.

Solution: Although this is a function of several variables, the output is
a single real number. Take the input, y + 5x2 and replace it by t, that is,
write

3
√
y + 5x2 = 3

√
t.

Thus, the output (which is the range) should match the range of 3
√
t. The

z-values achieved by 3
√
t are [0,∞).

Finding the Range: The range is the collection of z-values the function
achieves.
To find the range, replace the input by t, and write down the range of the
resulting function.

Example 1. Find the range of f(x, y) = ln(x2 − y).
The input is x2− y, so we consider ln(t). The range of ln(t) is (−∞,∞). So
the f has range of all real numbers, that is −∞ < z <∞ or (−∞,∞).

2. Level Curves

Now, we talk about how we work to understand functions of several variables.
These functions are much more difficult to graph so we need to understand them
using different techniques, one such method being level curves. The idea is to
choose a point on the z-axis then take a “slice” of the function to see what it’s doing
at that height.

Ex 1. Let f(x, y) = ln(x2 +y2) and suppose we want to see what is going on with
this function. Without access to some graphing instrument, this will be very tricky
to draw. Observe that if we choose z = C for some arbitrary, but constant, C, then

C = ln(x2 + y2)︸ ︷︷ ︸
f(x,y)

⇐⇒ eC = x2 + y2.
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For each C, we are looking at circle centered at the origin of radius
√
eC . We

would choose some value for C, like C = ln 4, then write

eln 4︸︷︷︸
4

= x2 + y2

which gives us a picture of a circle centered at (0, 0) of radius 2. This is the level
curve of f at C = ln 4.

If we look at the level curves associated to

C = 0, ln 4, ln 9, ln 16,

we get the following picture:

These are level curves from which we can construct the actual graph of f(x, y). Think
of level curves as what happens if we take a 3-dimensional image and smash it flat
on the floor (so the level curves are a bird’s eye view of the graph). To get the graph
of f(x, y), we use C as labels for the height of the function:

Observe that all the cross-sections of this graph are circles of increasing radius, which
we see for our different z-values.

Note 49. Recall that (x− h)2 + (y − k)2 = r2 is a circle of radius r centered at
(h, k).
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Level curves can also come in the following shapes:

x+ y = z

Figure 5. Lines

x2 − y = z y2 − x = z

Figure 6. Parabolas

y2 − x2 = z x2 − y2 = z

Figure 7. Hyperbolas

This list isn’t exhaustive as level curves can appear as any function.

Examples.

5. Consider the function f(x, y) = x2y.

(a) Find the level curves of f(x, y) for z = −1, z = 2.

Solution: Because we have been given specific z-values, we don’t
need to consider any other values. So, really, we are looking at the
functions

−1 = x2y and 2 = x2y.
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We want to graph these functions.

y = − 1

x2
←− rational function y =

2

x2
←− rational function

We observe that the symmetry is about the y-axis.

(b) What are the vertical and horizontal asymptotes for these functions?

Solution:

Horizontal Asymptote: y = 0

Vertical Asymptote: x = 0

6. Consider the function f(x, y) = e−x + y.

(a) Find the level curves of f(x, y) for z = −2, 1.

Solution: Again, we need only focus on z = −2, 1. This means we
are looking at the functions

−2 = e−x + y and 1 = e−x + y.

y = −e−x − 2←− exponential
function y = −e−x + 1←− exponential

function

(b) Find the horizontal asymptotes of these functions.

Solution: We have y = −2 and y = 1 .

(c) Find the y-intercepts of these functions.

Solution: The y-intercept is just where x = 0. So

y = −e0 − 2 ⇒ y = −3

and
y = −e0 + 1 ⇒ y = 0 .
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3. Additional Examples

Examples.

1. Find half of the area of the domain of

f(x, y) =
8x√

16− x2 − y2

in the xy-plane.

Solution: We first determine the domain of f(x, y). Since there is no
natural log in the function, we check only (1) and (2).

(1) We need
√

16− x2 − y2 6= 0. This means that 16− x2 − y2 6= 0 and so

we need to avoid x2 + y2 = 16, which is a circle of radius 4 centered at
the origin.

(2) For a square root to make sense, the input must be non-negative. So,
we have

16− x2 − y2 ≥ 0 ⇒ 16 ≥ x2 + y2.

Combining items (1) and (2), we must have

x2 + y2 < 16.

Thus, the domain is the interior of the circle of radius 4 centered at the
origin.

Second, we find the half of the area of the domain. If the domain is
a circle of radius 4, then half of this area is

π(4)2

2
= 8π .

2. Find the level curves of

f(x, y) = 3
√
y + 5x2.

Solution: We write

C = 3
√
y + 5x2

and solve for something we can graph. So,

C = 3
√
y + 5x2

⇒ C

3
=
√
y + 5x2

⇒ C2

9
= y + 5x2

⇒ C2

9
− 5x2 = y
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Thus, we see each level curve is a downward opening parabola shifted by
C2

9
.

3. If f(x, y) =
√

11(x+ 3)3 + 11(y + 19)2 and C = 1, then describe the level
curves of f(x, y) = C.

Solution: We are told that√
11(x+ 3)3 + 11(y + 19)2 = 1.

We make some simplifications to get a better idea of what the level curves
look like. Write

1 =
√

11(x+ 3)2 + 11(y + 19)2

⇒ 12 = 11(x+ 3)2 + 11(y + 19)2

⇒ 1

11
= (x+ 3)2 + (y + 19)2

By note (49), our equation is a circle of radius

√
1

11
centered at (−3,−19) .



Lesson 19: Partial Derivatives

1. Partial Derivatives

We address how to take a derivative of a function of several variables. Although
we won’t get into the details, the idea is that we take a derivative with respect to
a “direction”. What we mean is this: if we have a function of several variables,
we choose 1 variable and take the derivatives thinking of all the other variables as
constants. But this type of derivative doesn’t give the entire picture of what the
function is doing so we call these partial derivatives.

Ex 1. Let f(x, y) = x+ 2y and suppose we want to find its partial derivatives.

First, we need to choose a variable, say x. Second, we think of the other variables
(in this case just y) as constant with respect to x. This means we think of x and
y as acting totally independently so x changing doesn’t affect y. We use a special

notation denote this concept:
∂

∂x
.

The partial derivative with respect to (wrt) x is:

∂

∂x
f(x, y) =

∂

∂x
(x+ 2y) =

∂

∂x
(x) +

∂

∂x
(2y)︸ ︷︷ ︸

y does not
change wrt to x

= 1 + 0 = 1.

Notice that
∂

∂x
(x) =

d

dx
(x). This is because with respect to x,

∂

∂x
is exactly the

derivative as we’ve always done it.

We use the same line of thinking when we take y and hold x fixed. Here, x is a

constant with respect to y. Again, we have our own notation:
∂

∂y
.

The partial derivative with respect to y is:

∂

∂y
f(x, y) =

∂

∂y
(x+ 2y) =

∂

∂y
(x)︸ ︷︷ ︸

x does not
change wrt y

+
∂

∂y
(2y) = 0 + 2 = 2.

Again, we see that
∂

∂y
(2y) =

d

dy
(2y) because with respect to y,

∂

∂y
is the same y

derivative as before.

Remark 50. This ∂ is not a d, and we will call it “del”. ∂ is used exclusively for
partial derivatives.

219
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Note 51. We will use a variety of notation for partial derivatives but they will
mean the same thing. For example, if our function is z = f(x, y), we can write

fx = fx(x, y) =
∂

∂x
f(x, y) =

∂f

∂x
=
∂z

∂x

and

fy = fy(x, y) =
∂

∂y
f(x, y) =

∂f

∂y
=
∂z

∂y
.

For f(x, y) = x+ 2y, our partial derivatives are

∂f

∂x
= 1 and

∂f

∂y
= 2.

Be sure to review all the differentiation rules you may have forgotten (Appendix
B).

Examples.

1. Find fx, fy if f(x, y) = ex
2

+ ln y2.

Solution:

fx(x, y) =
∂

∂x
(ex

2

+ ln y2) =
∂

∂x
(ex

2

) +
∂

∂x
(ln y2)︸ ︷︷ ︸

0

= 2xex
2

fy(x, y) =
∂

∂y
(ex

2

+ ln y2) =
∂

∂y
(ex

2

)︸ ︷︷ ︸
0

+
∂

∂y
(ln y2) =

2y

y2
=

2

y

Thus,

fx = 2xex
2

and fy =
2

y

2. Find fx, fy if f(x, y) = y cosx.

Solution: For this problem, we want to remember that whenever c is a
constant

d

dx
(cx3) = c

d

dx
(x3).

We have the same property for partial derivatives:

∂

∂x
(cx3) = c

∂

∂x
(x3).

Even more, any function of y is constant with respect to x. So

∂

∂x
((sin y)x3) = sin(y)

∂

∂x
(x3).
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With this in mind, we compute

fx(x, y) =
∂

∂x
(y cosx) = y

↑
constant

wrt x

∂

∂x
(cosx) = −y sinx

fy(x, y) =
∂

∂y
(y cosx) = cosx

↑
constant

wrt y

∂

∂y
(y)︸ ︷︷ ︸
1

= cosx

Thus,

fx = −y sinx and fy = cosx .

3. Find fx(1, 0) and fy(1, 0) if f(x, y) =
3x− y
1− y

.

Solution: The difference between this example and the examples above
is that here we need to differentiate and then evaluate the derivative at the
point (1, 0).

Differentiating with respect to x,

fx(x, y) =
∂

∂x

(
3x− y
1− y

)
=

1

1− y︸ ︷︷ ︸
constant

wrt x

∂

∂x
(3x− y) =

1

1− y
(3− 0) =

3

1− y
.

Hence,

fx(1, 0) =
3

1− 0
= 3.

Now, to differentiate with respect to y, we will need to use the quotient
rule (we could also use the product rule after a small rewrite). So

fy(x, y) =
∂

∂y

(
3x− y
1− y

)

=

(1− y)
∂

∂y
(3x− y)− (3x− y)

∂

∂y
(1− y)

(1− y)2

=
(1− y)(−1)− (3x− y)(−1)

(1− y)2

=
(−1 + y) + (3x− y)

(1− y)2

=
y − 1 + 3x− y

(1− y)2

=
3x− 1

(1− y)2
.
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Thus,

fy(1, 0) =
3(1)− 1

(1− 0)2
= 2.

Finally,

fx(1, 0) = 3 and fy(1, 0) = 2 .

4. Find fx, fy if f(x, y) = ex
2y.

Solution: Recall that if we were considering a function of a single vari-

able, say e3x+x2 , its derivative with respect to x is

d

dx
e3x+x2 =

(
d

dx
(3x+ x2)

)
e3x+x2 = (3 + 2x)e3x+x2

by the chain rule. The chain rule still applies to partial derivatives.

fx =
∂

∂x
(ex

2y) =
∂

∂x
(x2y)ex

2y = y
↑

constant
wrt x

∂

∂x
(x2)ex

2y = y(2x)ex
2y = 2xyex

2y

fy =
∂

∂y
(ex

2y) =
∂

∂y
(x2y)ex

2y = x2

↑
constant

wrt y

∂

∂y
(y)ex

2y = x2ex
2y

So,

fx = 2xyex
2y and fy = x2ex

2y .

5. Find fx(1, 0) if f(x, y) = ln(ln(y)x).

Solution: Recall that

d

dx
ln(g(x)) =

g′(x)

g(x)
.

This rule still follows for partial derivatives:

fx(x, y) =
∂

∂x
(ln(ln(y)x)) =

∂

∂x
(ln(y)x)

ln(y)x
=

ln(y)
∂

∂x
(x)

ln(y)x
=

ln(y)

ln(y)x
=

1

x

Thus,

fx(1, 0) =
1

1
= 1 .

2. Additional Examples

Examples.
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1. Find fx and fy given

f(x, y) =
√

1− 7x2 − 3y2.

Solution: Our function will require us to use the chain rule. Observe
that √

1− 7x2 − 3y2 = (1− 7x2 − 3y2)1/2.

Differentiating first with respect to x,

fx =
∂

∂x
(1− 7x2 − 3y2)1/2

=
1

2

(
∂

∂x
(1− 7x2 − 3y2)

)
(1− 7x2 − 3y2)−1/2

=
1

2
(−14x)(1− 7x2 − 3y2)−1/2

=
−7x√

1− 7x2 − 3y2

Next, we differentiate with respect to y,

fy =
∂

∂y
(1− 7x2 − 3y2)1/2

=
1

2

(
∂

∂y
(1− 7x2 − 3y2)

)
(1− 7x2 − 3y2)−1/2

=
1

2
(−6y)(1− 7x2 − 3y2)−1/2

=
−3y√

1− 7x2 − 3y2

Thus,

fx =
−7x√

1− 7x2 − 3y2
and fy =

−3y√
1− 7x2 − 3y2

.

2. Let

f(x, y) =
10x2y3

y − 8x
;

evaluate fx(x, y) at (1,−1). Round your answer to 4 decimal places.

Solution: We differentiate with respect to x and then evaluate at the
point (x, y) = (1,−1). Note that

10x2y3

y − 8x
= 10x2y3(y − 8x)−1.

Written this way, we can use the product rule instead of the quotient rule,
which is how we proceed.
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Write

fx =
∂

∂x
(10x2y3(y − 8x)−1)

= 10x2y3

(
∂

∂x
(y − 8x)−1

)
+

(
∂

∂x
(10x2y3)

)
(y − 8x)−1

= 10x2y3

(
− ∂

∂x
(y − 8x)

)
(y − 8x)−2 + 20xy3(y − 8x)−1

= −10x2y3(−8)(y − 8x)−2 + 20xy3(y − 8x)−1

= 80x2y3(y − 8x)−2 + 20xy3(y − 8x)−1

= (y − 8x)−2
(
80x2y3 + 20xy3(y − 8x)

)
= (y − 8x)−2

(
80x2y3 + 20xy4 − 160x2y3

)
= (y − 8x)−2

(
20xy4 − 80x2y3

)
Evaluating at (1,−1), we have

fx(1,−1) = (−1− 8(1))−2(20(1)(−1)4 − 80(1)2(−1)3)

= (−9)−2(20 + 80)

≈ 1.2346

3. Find fx, fy if f(x, y) = xy sin(xy).

Solution: We need to use the product rule and chain rule.

fx(x, y) =
∂

∂x
(xy sin(xy))

= xy
∂

∂x
(sin(xy)) +

∂

∂x
(xy) sin(xy)

= xy( y
↑

∂
∂x

(xy)

· cos(xy)) + y sin(xy)

= xy2 cos(xy) + y sin(xy)

fy(x, y) = xy
∂

∂y
(sin(xy)) +

∂

∂y
(xy) sin(xy)

= xy( x
↑

∂
∂y

(xy)

· cos(xy)) + x sin(xy)

= x2y cos(xy) + x sin(xy)

Thus,

fx = xy2 cos(xy) + y sin(xy) and fy = x2y cos(xy) + x sin(xy) .



Lesson 20: Partial Derivatives (II)

1. Second Order Partial Derivatives

Just as with functions of a single variable, it makes sense to take higher derivatives
of functions of several variables.

We can take derivatives with respect to the same variable twice, which we would
denote

fxx =
∂2f

(∂x)2
and fyy =

∂2f

(∂y)2
.

But we can also take the derivative with respect to one variable and then with respect
to another. For example, we might take the derivative with respect to x and then
with respect to y. We denote this by

(fx)y = fxy.

Similarly, if we differentiate with respect to y and then with respect to x, we would
write

(fy)x = fyx.

Fact 52 (Clairaut’s Theorem). fxy = fyx

So it turns out the distinction doesn’t actually matter so much. However, there
are situations where it is easier to differentiate with respect to one variable first and
the other second.

Ex 1. If f(x, y) = y sin(x) cos(x) and we want to find fxy, it is actually easier to
differentiate with respect to y and then with respect to x.

We call fxy and fyx the mixed partials.

Examples.

1. Find the second order derivatives of

f(x, y) = x3y2 + xy6.

Solution: When we are asked to find the second order derivatives, this
means we need to find fxx, fyy, fxy, i.e., all the second order derivatives.

We start by finding the first order derivatives:

fx(x, y) =
∂

∂x
(x3y2 + xy6) = 3x2y2 + y6

fy(x, y) =
∂

∂y
(x3y2 + xy6) = 2x3y + 6xy5

225
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Then we note that

fxx = (fx)x, fxy = (fx)y, fyy = (fy)y.

So, starting from fx, fy, we find

fxx(x, y) =
∂

∂x
(3x2y2 + y6︸ ︷︷ ︸

fx

) = 6xy2

fxy(x, y) =
∂

∂y
(3x2y2 + y6︸ ︷︷ ︸

fx

) = 6x2y + 6y5

fyy(x, y) =
∂

∂y
(2x3y + 6xy5︸ ︷︷ ︸

fy

) = 2x3 + 30xy4

Therefore, our second order derivatives are

fxx = 6xy2, fyy = 2x3 + 30xy4, fxy = 6x2y + 6y5

2. Find fuv if f(u, v) = e7u+v.

Solution: Nothing is different here except how they have named the vari-
ables. Further, we need only find one second order derivative. Differentiating
with respect to u, we get

fu(u, v) =
∂

∂u
(e7u+v) =

[
∂

∂u
(7u+ v)

]
· e7u+v = 7e7u+v.

Then differentiating with respect to v, we get

fuv(u, v) =
∂

∂v
(7e7u+v) = 7

[
∂

∂v
(7u+ v)

]
︸ ︷︷ ︸

1

·e7u+v = 7e7u+v .

3. Find the second order derivatives of

f(x, y) = x ln(3xy).

Solution: Again, when asked to find the second order derivatives, we
are asked to find fxx, fxy, fyy.

To start,

fx(x, y) =
∂

∂x
(x ln(3xy))

= x

[
∂

∂x
(ln(3xy))

]
+ ln(3xy)

[
∂

∂x
(x)

]
︸ ︷︷ ︸

1

= x

 ∂

∂x
(3xy)

3xy

+ ln(3xy)
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= x

(
3y

3xy

)
+ ln(3xy)

= 1 + ln(3xy)

fy(x, y) =
∂

∂y
(x ln(3xy))

= x

[
∂

∂y
(ln(3xy))

]

= x


∂

∂y
(3xy)

3xy


= x

(
3x

3xy

)
=
x

y

Next,

fxx(x, y) =
∂

∂x
(1 + ln(3xy)︸ ︷︷ ︸

fx

) =

∂

∂x
(3xy)

3xy
=

3y

3xy
=

1

x

fxy(x, y) =
∂

∂y
(1 + ln(3xy)︸ ︷︷ ︸

fx

) =

∂

∂y
(3xy)

3xy
=

3x

3xy
=

1

y

fyy(x, y) =
∂

∂y

(
x

y

)
︸ ︷︷ ︸
fy

= x

[
∂

∂y

(
1

y

)]
= x

(
− 1

y2

)
= − x

y2

Thus,

fxx =
1

x
, fyy = − x

y2
, fxy =

1

y

4. If f(x, y) = 8x sin(8y), find fxx(5, 10), fxy(5, 10), fyy(5, 10). Round your an-
swers to the nearest hundredth.

Solution: We begin by computing the first order derivatives. Write

fx =
∂

∂x
(8x sin(8y))

= sin(8y)

[
∂

∂x
(8x)

]
= 8 sin(8y)



228 LESSON 20: PARTIAL DERIVATIVES (II)

fy =
∂

∂y
(8x sin(8y))

= 8x

[
∂

∂y
(sin(8y))

]
= 8x [8 cos(8y)]

= 64x cos(8y)

Next, we find the second order partial derivatives:

fxx =
∂

∂x
(8 sin(8y)︸ ︷︷ ︸

fx

) = 0

fxy =
∂

∂y
(8 sin(8y)︸ ︷︷ ︸

fx

) = 64 cos(8y)

fyy =
∂

∂y
(64x cos(8y)︸ ︷︷ ︸

fy

)

= 64x

[
∂

∂y
(cos(8y))

]
= 64x(−8 sin(8y))

= −512x sin(8y)

Finally, we evaluate at the point (5, 10):

fxx(5, 10) = 0

fxy(5, 10) = 64 cos(8 · 10) ≈ −7.06

fyy(5, 10) = −512(5) sin(8 · 10) ≈ 2544.35

Note 53. Keep your calculator in radians unless explicitly told to use
degrees.

5. Find the second order derivatives of f(x, y) = yesinx.

Solution: Write

fx(x, y) =
∂

∂x
(yesinx)

= y

[
∂

∂x
(sinx)

]
· esinx

= y(cosx)esinx

fy(x, y) =
∂

∂y
(yesinx) = esinx
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Next,

fxx(x, y) =
∂

∂x
(y(cosx)esinx︸ ︷︷ ︸

fx

)

= y cosx

[
∂

∂x
(esinx)

]
+ esinx

[
∂

∂x
(y cosx)

]
= y(cos2 x)esinx − y(sinx)esinx

fxy(x, y) =
∂

∂y
(y(cosx)esinx︸ ︷︷ ︸

fx

) = (cos x)esinx

fyy(x, y) =
∂

∂y
(esinx︸︷︷︸

fy

) = 0

Thus,

fxx = y(cos2 x)esinx − y(sinx)esinx, fxy = (cosx)esinx, fyy = 0

Note 54. This homework is not too tough conceptually but it is still difficult
because you need to be very careful with your algebra. Keeping track of all the little
components is tricky and takes a lot of practice. When you are working on your
homework, keep your work neat and detailed. If you are sure you have added each
detail at each step, then checking for errors is significantly easier. It is important that
you learn how to proofread your own work.

2. Additional Examples

Examples.

1. Find fxy(1, 2) given

f(x, y) =
3x ln(3xy)

4y
.

Round your answer to 4 decimal places.

Solution: We first find fxy, and then evaluate at (x, y) = (1, 2). By
Clairaut’s theorem (Fact 52), the order of differentiation does not matter.
We begin by differentiating with respect to x:

fx =
∂

∂x

(
3x ln(3xy)

4y

)
=

1

4y

∂

∂x
(3x ln(3xy))

=
1

4y

(
(3x)

∂

∂x
ln(3xy) +

(
∂

∂x
(3x)

)
ln(3xy)

)
=

1

4y

(
(3x)

(
3y

3xy

)
+ 3 ln(3xy)

)
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=
1

4y
(3 + 3 ln(3xy))

Next, we differentiate with respect to y:

fxy =
∂

∂y

(
1

4y
(3 + 3 ln(3xy))

)
=

1

4y

∂

∂y
(3 + 3 ln(3xy)) +

∂

∂y

(
1

4y

)
(3 + 3 ln(3xy))

=
1

4y

(
3(3x)

3xy

)
− 1

4y2
(3 + 3 ln(3xy))

=
3

4y2
− 3 + 3 ln(3xy)

4y2

= −3 ln(3xy)

4y2

Next, we evaluate at (1, 2):

fx,y(1, 2) = −3 ln(3(1)(2)

4(2)2

= −3 ln(6)

16

≈ −.3360

2. Find fxy(x, y) if

f(x, y) = (5x3 + 3y2)e−xy.

Solution: Write

fx =
∂

∂x
((5x3 + 3y2)e−xy)

= (5x3 + 3y2)
∂

∂x
(e−xy) +

(
∂

∂x
(5x3 + 3y2)

)
e−xy

= (5x3 + 3y2)(−ye−xy) + (15x2)e−xy

= (−5x3y + 3y3)e−xy + 15x2e−xy

= (−5x3y + 15x2 − 3y3)e−xy

Finally,

fxy =
∂

∂y
((−5x3y + 15x2 − 3y3)e−xy)
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= (−5x3y + 15x2 − 3y3)
∂

∂y
(e−xy) +

(
∂

∂y
(−5x3y + 15x2 − 3y3)

)
e−xy

= (−5x3y + 15x2 − 3y3)(−xe−xy) + (−5x3 − 9y2)e−xy

= (5x4y − 15x3 + 3xy3)e−xy + (−5x3 − 9y2)e−xy

= (5x4y − 20x3 + 3xy3 − 9y2)e−xy

3. Compute the second order derivatives of

f(x, y) = 10yecos(5x−3).

Solution: By second order derivatives, we mean fxx, fyy, fxy. We start
by finding fx and fy. Write

fx =
∂

∂x
(10yecos(5x−3))

= 10y
∂

∂x
ecos(5x−3)

= 10y

(
∂

∂x
cos(5x− 3)

)
ecos(5x−3)

= 10y(5)(− sin(5x− 3))ecos(5x−3)

= −50y sin(5x− 3)ecos(5x−3)

fy =
∂

∂y
(10yecos(5x−3))

= 10ecos(5x−3) ∂

∂y
(y)

= 10ecos(5x−3)

Next, we take the second partial derivatives

fxx =
∂

∂x

(
−50y sin(5x− 3)ecos(5x−3)

)︸ ︷︷ ︸
fx

= −50y
∂

∂x
(sin(5x− 3)ecos(5x−3))

= −50y

[
sin(5x− 3)

∂

∂x
ecos(5x−3) +

(
∂

∂x
sin(5x− 3)

)
ecos(5x−3)

]
= −50y

[
sin(5x− 3)

(
∂

∂x
cos(5x− 3)

)
ecos(5x−3) + 5 cos(5x− 3)ecos(5x−3)

]
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= −50y
[
−5 sin2(5x− 3)ecos(5x−3) + 5 cos(5x− 3)ecos(5x−3)

]
= 250y

[
sin2(5x− 3)− cos(5x− 3)

]
ecos(5x−3)

fxy =
∂

∂y

(
−50y sin(5x− 3)ecos(5x−3)

)︸ ︷︷ ︸
fx

= −50 sin(5x− 3)ecos(5x−3)

fyy =
∂

∂y
10ecos(5x−3)︸ ︷︷ ︸

fy

= 0

We conclude

fxx = 250y
[
sin2(5x− 3)− cos(5x− 3)

]
ecos(5x−3), fxy = −50 sin(5x− 3)ecos(5x−3), fyy = 0



Lesson 21: Differentials of Multivariable Functions

1. Quick Review of Differentials

Ex 1. Consider the function f(x) =
√
x. We know that f(9) =

√
9 = 3, but what

is f(9.1) =
√

9.1? Obviously, if you have a calculator this is easy. But instead of just
using a calculator, we’ll use differentials.

Let x = 9 and x + ∆x = 9.1, that is, ∆x = .1. ∆x is the actual change in the
input x. Our goal is to approximate how this change in the input affects the output
function, that is, f(9.1) = f(x+ ∆x). For this, we use calculus. Write

∆y = f(x+ ∆x)− f(x) = f(9.1)− f(9) =
√

9.1−
√

9.

∆y is the actual change the function f(x), which is our goal. In an ideal world, we
could compute this directly for any given ∆x. But, in general, this is difficult to
compute even with a calculator so we settle for an approximation of ∆y instead.

Observe that the equation

(12)
∆y

∆x
=
f(x+ ∆x)− f(x)

∆x

looks a lot like a derivative. In fact, the only difference between equation (12) and
an actual derivative is that we need to take the limit as ∆x → 0. Because limits
deal with things getting really close together, if our ∆x is small we can make an

approximation of
∆y

∆x
using equation (12). We can write this like

∆y

∆x
=
f(x+ ∆x)− f(x)

∆x
≈ f ′(x) =

dy

dx
.

More helpfully, we have

(13) ∆y ≈ f ′(x)∆x.

This just means that we can approximate the change in the function by taking the
change in the input and multiplying it by the derivative of the function. Let’s apply
this to the example above. Since f(x) =

√
x, we have

f ′(x) =
1

2
√
x
.

Hence, by equation (13),

√
9.1−

√
9 = ∆y ≈ f ′(9)∆x =

1

2
√

9
(.1) =

.1

2(3)
=

1

60
.

233



234 LESSON 21: DIFFERENTIALS OF MULTIVARIABLE FUNCTIONS

So, if
√

9.1−
√

9 ≈ 1

60
, we can add

√
9 to both sides to get

√
9.1 ≈

√
9︸︷︷︸

3

+
1

60
≈ 3.01666667

Using a calculator, we find
√

9.1 ≈ 3.0166207.

So our approximation is pretty good.

Note 55. We call dx and dy differentials. By the nature of derivatives (because
we would assume that ∆x → 0), the smaller ∆x is, the better the approximation of
∆y.

Think of ∆ as the actual change and d as the infinitesimal change. This is why
we use dx in an integral and not ∆x because ∆x is “too” big.

2. Differentials of Multivariable Functions

We can apply much of this thinking to functions of more than 1 variable as well.
This time, however, we consider how changes in x and y affect z = f(x, y). Our
notation will be essentially the same and our goal will be to approximate

∆z = f(x+ ∆x, y + ∆y)− f(x, y).

The total differential is given by

∂z =
∂z

∂x
dx+

∂z

∂y
dy = fx(x, y)dx+ fy(x, y)dy.

We can use this formula to approximate ∆z (remember, ∆z is the actual change in
z). Now, we take ∆x = dx and ∆y = dy and use these to approximate ∆z as follows:

(14) ∆z ≈ ∂z

∂x
∆x+

∂z

∂y
∆y.

We call this equation the incremental approximation formula for functions of
two variables.

Ex 2. Suppose we have z = f(x, y) =
√
x2 + y2. Then if x = 3, y = 4,

f(3, 4) =
√

(3)2 + (4)2 =
√

9 + 16 =
√

25 = 5.

What if we wanted to find f(3.1, 3.8)? Take ∆x = 3.1−3 = .1 and ∆y = 3.8−4 = −.2.
Next, note that

fx(x, y) =
∂

∂x

(√
x2 + y2

)
=

2x

2
√
x2 + y2

=
x√

x2 + y2

fy(x, y) =
∂

∂y

(√
x2 + y2

)
=

2y

2
√
x2 + y2

=
y√

x2 + y2
.
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Therefore, by equation (14) above,

∆z ≈ x√
x2 + y2

∆x+
y√

x2 + y2
∆y

=
3√

(3)2 + (4)2
(.1) +

4√
(3)2 + (4)2

(−.2)

=
3

5
(.1) +

4

5
(−.2)

=
3

50
− 8

50

= − 5

50
= − 1

10
= −.1

So we can write

∆z = f(x+ ∆x, y + ∆y)− f(x, y)

= f(3.1, 3.8)− f(3, 4)

and adding f(3, 4) to both sides, we get

f(3.1, 3.8) = f(3, 4) + ∆z ≈ 5 + (−.1) = 4.9.

Plugging it into a calculator,
√

(3.1)2 + (3.8)2 ≈ 4.9041. So our approximation wasn’t
too far off.

3. Solution to In-Class Examples

Example 1. Use increments to estimate the change in z at (1,−1) if
∂z

∂x
= 3x+y

and
∂z

∂y
= 9y given ∆x = .01 and ∆y = .02.

Solution: We use our incremental approximation formula.

∆z ≈ ∂z

∂x
(1,−1)∆x+

∂z

∂y
(1,−1)∆y

= [3(1) + (−1)]︸ ︷︷ ︸
∂z
∂x

(1,−1)

(.01)︸︷︷︸
∆x

+ [9(−1)]︸ ︷︷ ︸
∂z
∂y

(1,−1)

(.02)︸︷︷︸
∆y

= 2(.01)− 9(.02)

= .02− 9(.02)

= −8(.02) = −.16 .

Example 2. Suppose that when a babysitter feeds a child x donuts and y pieces

of cake, the child needs to run
√
x2y + 7 laps in the backyard to be able to go to bed

before the parents get home. If one evening the babysitter gives the child 3 donuts
and 2 pieces of cake and the next time babysitting, 3.5 donuts and 1.5 pieces of cake,
estimate the difference in the number of laps the child will need to run.
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Solution: Take x = 3, y = 2. Then ∆x = 3.5− 3 = .5 and ∆y = 1.5− 2 = −.5.
Next, we need to find the derivatives with respect to x and y. Write

∂z

∂x
=

2xy

2
√
x2y + 7

=
xy√
x2y + 7

∂z

∂y
=

x2

2
√
x2y + 7

.

Thus,

∆z ≈ xy√
x2y + 7

∆x+
x2

2
√
x2y + 7

∆y

=
(3)(2)√

(3)2(2) + 7
(.5) +

(3)2

2
√

(3)2(2) + 7
(−.5)

=
6√

18 + 7
(.5) +

9

2
√

18 + 7
(−.5)

=
3√
25
− 9

4
√

25

=
3

5
− 9

20
=

12

20
− 9

20
=

3

20
laps .

Example 3. A company produces boxes with square bases. Suppose they initially
create a box that is 10 cm tall and 4 cm wide but they want to increase the box’s
height by .5 cm. Estimate how they must change the width so that the box stays the
same volume.

Solution: Because we are told these boxes have a square base, the formula for
volume is V = hw2 where h is the height and w is the width. We are told h = 10,
w = 4, ∆h = .5 and ∆V = 0 (because we want the volume of the box to stay the
same). Now, we know that

∂V

∂h
= w2 and

∂V

∂w
= 2wh.

So, applying our formula we have

∆V ≈ ∂V

∂h
∆h+

∂V

∂w
∆w

⇒ ∆V = (w2)∆h+ (2wh)∆w

⇒ 0 = [(4)2](.5) + [2(10)(4)]∆w

= 8 + 80∆w.

So we need to solve for ∆w given

0 = 8 + 80∆w.

We conclude that ∆w = − 1

10
.
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This tells us that the width decreases by
1

10
cm .

Example 4. Suppose the function S = W 2F + F 2W describes the number of
fern spores (in millions) released into the air where F is the number of ferns in an
area and W is the speed of the wind in miles per hour. Suppose F = 56 and W = 10
with maximum errors of 2 ferns and 3 miles per hour. Find the approximate relative
percentage error in calculating S. Round your answer to the nearest percent.

Solution: Here, we think of the relative errors as our ∆. Let ∆F = ±2 and
∆W = ±3. We are essentially trying to figure out how changing the inputs (in the
sense of correcting the error) changes the number of spores released. We know that

SF = W 2 + 2FW and SW = 2WF + F 2.

By our formula,

∆S = (W 2 + 2FW )∆F + (2WF + F 2)∆W

= [102 + 2(56)(10)](±2) + [2(10)(56) + 562](±3)

= ±(100 + 2(560))(2)± (2(560) + 562)(3)

= ±2440± 12, 768.

Now, we need to consider the 4 different possibilities that we get from the ± signs.
Write

2440 + 12, 768 = 15, 208

2440− 12, 768 = −10, 328

−2440 + 12, 768 = 10, 328

−2440− 12, 768 = −15, 208.

To find the maximum error, we’re looking for is the largest number in absolute value.
So we say ∆S = 15, 208.

Finally, to determine the relative error, we take

∆S

S
=

15, 208

(10)2(56) + (56)2(10)
=

15, 208

36, 960
≈ .41147.

Thus, our answer is 41% .

This tells us that our formula is not very good as a model because small changes
in the input (i.e., the errors) lead to large changes in the output.

4. Additional Examples

Examples.

1. The output at a certain plant is

Q(x, y) = 0.08x2 + 0.12xy + 0.03y2 units per day,

where x is the number of hours of skilled labor used and y is the number of
hours of unskilled labor used. Currently, 30 hours of skilled labor and 190
hours of unskilled labor are used each day. Use calculus to estimate to 1
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decimal place the change in daily output if an additional 8.5 hours of skilled
labor are used each day, while 8 fewer hours of unskilled labor are used each
day.

Solution: We are asked to calculate the change in the daily output,
which is ∆Q. We are told that x = 30, y = 190, ∆x = 8.5, and ∆y = −8.
Now,

∂Q

∂x
= 0.16x+ 0.12y and

∂Q

∂y
= 0.12x+ 0.06y.

So we write

∆Q ≈ ∂Q

∂x
(30, 190)∆x+

∂Q

∂y
(30, 190)∆y

= (0.16(30) + 0.12(190))(8.5) + (0.12(30) + 0.06(190))(−8)

≈ 114.6 units per day

2. The productivity of a company is

P (x, y) = 30x4/5y1/5 thousands of units

where x is the number of employees and y is the amount of capital expendi-
ture in thousands of dollars. What is the change in the productivity if the
number of employees is decreased from 225 to 200 and the capital spent is
increased from $28,000 to $36,000? Round to 2 decimal places.

Solution: We compute ∆P given that x = 225, y = 28, ∆x = 225 −
200 = 25, and ∆y = 28 − 36 = −8 (note that we are measuring y in
thousands). The change in our variables is always measured from what is
the case now to what will be in the future.

Now, differentiating P , we get

∂P

∂x
= 30(4/5)x−1/5y1/5

= 24x−1/5y1/5

∂P

∂y
= 30(1/5)x4/5y−4/5

= 6x4/5y−4/5

Hence,

∆P ≈ ∂P

∂x
(225, 28)∆x+

∂P

∂y
(225, 28)∆y

= 24(225)−1/5(28)1/5(25) + 6(225)4/5(36)−4/5(−8)

≈ 141.25 thousands of units

3. A soft drink can is h centimeters tall and has a radius of r centimeters. The
cost of material in the can is 0.001 cents per cm2 and the cost of the soda
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itself is 0.0015 cents per cm3. The cans are currently 7 cm tall and have a
radius of 5 cm. Use calculus to estimate the effect on costs of increasing the
radius by 0.5 cm and decreasing the height by 0.9 cm. Round your answer
to 3 decimals.

Solution: We assume that the can is a true cylinder so that we can
compute its volume and surface area.

The volume of a cylinder is given by V = πr2h and the surface area of
a cylinder is given by SA = 2πr2 + 2πrh. Thus, the cost of the material is
described by

C(r, h) = 0.001(2πr2 + 2πrh) + 0.0015(πr2h)

= 0.002πr2 + 0.002πrh+ 0.0015πr2h

We want to find ∆C given that r = 5, h = 7, ∆r = 0.5, and ∆h = −0.9.
Differentiating,

∂C

∂r
= 0.004πr + 0.002πh+ 0.003πrh

∂C

∂h
= 0.002πr + 0.0015πr2

Thus,

∆C ≈ ∂C

∂r
(5, 7)∆r +

∂C

∂h
(5, 7)∆h

= [0.004π(5) + 0.002π(7) + 0.003π(5)(7)](0.5) + [0.002π(5) + 0.0015π(5)2](−0.9)

= [0.02π + 0.014π + 0.105π](0.5) + [0.01π + 0.0375π](−0.9)

= [0.139π](0.5) + [0.0475π](−0.9)

= 0.0695π − .04275π

≈ 0.084 cents per can
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1. Chain Rule for Multivariable Functions

Sometimes functions are written as function of more than one variable but can
actually come down to a single variable, which is to say that x and y are related
through a third variable.

This situation often occurs when both of our variables are related to time. For
example, to know how the weather feels to humans, we need the actual temperature
and the humidity. But both of these variables depend on the time of day we are
considering — even if the temperature and humidity are otherwise unrelated.

Ex 1. Suppose x(t) = t4 + 1 describes the number of socks a store sells over time
and y(t) = 3t2 + 6 describes the price of the socks over time. Let z(t) = xy be the
revenue the store earns from the sale of the socks. How does the revenue change with
respect to time?

One way to do this is to write z entirely in terms of t and then differentiate, but
the more complicated x, y, and z become, the more difficult this task is. Instead, we
use the chain rule for multivariable functions:

(15)
dz

dt
=
∂z

∂x

(
dx

dt

)
+
∂z

∂y

(
dy

dt

)

Note 56. Observe that this is
dz

dt
and not

∂z

∂t
. As a function of t, z is a function

of a single variable. The proper notation, then, is
dz

dt
.

In this Ex, we have

∂z

∂x
= y,

∂z

∂y
= x,

dx

dt
= 4t3,

dy

dt
= 6t.

Applying equation (15), we see that the change in the revenue over time is given by

dz

dt
= (y)(4t3) + (x)(6t).

We leave it like this (this is how you should input your answer for the homework).

Examples.

1. Find
dz

dt
given

z = x2y2, x = cos t, y = 3t3.

241
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Solution: Differentiating,

∂z

∂x
= 2xy2,

∂z

∂y
= 2x2y,

dx

dt
= − sin t,

dy

dt
= 9t2.

Applying equation (15),

dz

dt
= (2xy2)︸ ︷︷ ︸

∂z

∂x

(− sin t)︸ ︷︷ ︸
dx

dt

+ (2x2y)︸ ︷︷ ︸
∂z

∂y

(9t2)︸︷︷︸
dy

dt

= −2xy2 sin(t) + 18x2yt2 .

Again, leave it like this for the homework.

2. Given z =
√
x2 + y2, x = ln

√
t, and y =

1

t
, find

dz

dt
evaluated at t = 1.

Solution: We start this problem in the same manner as above: we dif-
ferentiate. Write

∂z

∂x
=

x√
x2 + y2

,
∂z

∂y
=

y√
x2 + y2

,
dx

dt
=

1

2t
,

dy

dt
= − 1

t2
.

And as before, we apply equation (15),

dz

dt
=

x√
x2 + y2︸ ︷︷ ︸
∂z

∂x

(
1

2t

)
︸ ︷︷ ︸
dx

dt

+
y√

x2 + y2︸ ︷︷ ︸
∂z

∂y

(
− 1

t2

)
︸ ︷︷ ︸
dy

dt

.

Now, we are asked to evaluate at t = 1, which means wherever we see
t, we put 1 instead. But what do we do about x and y? We return to our
original expressions for x and y,

x = ln
√
t and y =

1

t
,

and take t = 1. So,

x(1) = ln
√

1 = ln(1) = 0 and y(1) =
1

1
= 1.

Therefore,

dz

dt
(t = 1) =

x√
x2 + y2

(
1

2t

)
+

y√
x2 + y2

(
− 1

t2

)

=
0√

(0)2 + (1)2

(
1

2(1)

)
+

1√
(0)2 + (1)2

(
− 1

(1)2

)
= −1 .
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3. The width of a box with a square base is increasing at a rate of 2 in/min
while height is decreasing at a rate of 10 in/min. What is the rate of change
of the surface area when the width is 18 inches and the height is 30 inches?

Solution: Let w be the width and h be the height of the box. Because
the box has a square base, the surface area is given by

SA = 2w2 + 4wh.

Our goal is to find
dSA

dt
when w = 18 and h = 30. So we need to use

equation (15) and then evaluate at (w, h) = (18, 30). Now, we are told that

dw

dt
= 2 and

dh

dt
= −10

since the width is increasing at a rate of 2 in/min and the height is decreasing
at a rate of 10 in/min. Further,

∂SA

∂w
= 4w + 4h and

∂SA

∂h
= 4w.

By equation (15), we have

dSA

dt
=
∂SA

∂w

(
dw

dt

)
+
∂SA

∂h

(
dh

dt

)
= [4w + 4h](2) + [4w](−10).

Evaluating at (w, h) = (18, 30), we get

dSA

dt
(18, 30) = [4(18) + 4(30)](2) + [4(18)](−10) = −336 in/min .

4. PV = nRT is the ideal gas law where P is pressure in Pascals (Pa), V is
volume in liters (L), and T is temperature in Kelvin (K) of n moles of gas.
R is the ideal gas constant. Suppose P is decreasing at a rate of 1 Pa/min
and the temperature is increasing at a rate of 2 K/min. How is the volume
changing?

Solution: We are tasked with finding
dV

dt
. We were given the formula

PV = nRT ⇒ V =
nRT

P
.

Now, n and R are constants and P, T are variables. Written in this form, V
is a function of P and T . So,

∂V

∂P
=

∂

∂P

(
nRT

P

)
= nRT

[
∂

∂P

(
1

P

)]
= nRT

(
− 1

P 2

)
= −nRT

P 2

and

∂V

∂T
=

∂

∂T

(
nRT

P

)
=
nR

P

[
∂

∂T
(T )

]
=
nR

P
.
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Since we are told that P is decreasing at a rate of 1 Pa/min and the
temperature is increasing at a rate of 2 K/min, we have that

dP

dt
= −1 and

dT

dt
= 2.

By equation (15),

dV

dt
=
∂V

∂P

dP

dt
+
∂V

∂T

dT

dt

=

(
−nRT

P 2

)
(−1) +

(
nR

P

)
(2)

=
nRT

P 2
+

2nR

P
.

We leave our answer in the above form because they have not given us
enough information to be more specific.

Note 57. This lesson may seem very similar to Lesson 21 and rightly so as the
only difference is that the incremental approximation formula is an approximation of
the chain rule for multivariable functions. When do we know which formula applies?

Think of incremental change as change over some period of time and the type
of change discussed in this lesson as instantaneous (that is, a derivative). If the
questions asks about a “rate of change” or something implying instantaneous change,
then the chain rule for multivariable functions applies. However, if the question asks
for an estimate or approximation or talks about change not in terms of a derivative
function, then the incremental approximation formula applies.

2. Additional Example

Examples.

1. The monthly demand for the Instant Pie Maker is given by

D(x, y) =
9

1000
xexy/1000 units,

where x dollars are spend on infomercials and y dollars are spent on in-
person demonstrations. If t months from now, x = 95+ t2/3 dollars are spent
on infomercials and y = t ln(1 + t) dollars are spent on demonstrations, at
approximately what rate will the demand be changing with respect to time
8 months from now? Round your answer to 3 decimal places.

Solution: We need to use the product rule to find our partial derivative
with respect to x:

∂D

∂x
=

9

1000
x

(
∂

∂x
exy/1000

)
+

(
∂

∂x

9

1000
x

)
exy/1000

=
9

1000
x
( y

1000

)
exy/1000 +

9

1000
exy/1000
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=
9xy

(1000)2
exy/1000 +

9

1000
exy/1000

=
9xy + 9000

(1000)2
exy/1000

Next, we find the partial derivative with respect to y:

∂D

∂y
=

∂

∂y

(
9

1000
xexy/1000

)
=

(
9

1000
x

)( x

1000

)
exy/1000

=
9x2

(1000)2
exy/1000

Moreover,

dx

dt
=

2

3
t−1/3

dy

dt
= t

(
1

1 + t

)
+ ln(1 + t) =

t

1 + t
+ ln(1 + t)

We are evaluating at t = 8, which means we have

x(8) = 95 + (8)2/3 = 99

dx

dt
(8) =

2

3
(8)−1/3 =

2

3

(
1

2

)
=

1

3

y(8) = 8 ln(9)

dy

dt
(8) =

8

9
+ ln(9)

Putting this together, we have

dz

dt
=
∂D

∂x

dx

dt
+
∂D

∂y

dy

dt

=
9(99)(8 ln(9)) + 9000

(1000)2
e99(8 ln(9))/1000

(
1

3

)
+

9(99)2

(1000)2
e99(8 ln(9))/1000

(
8

9
+ ln(9)

)
≈ 1.589

2. Use the chain rule to compute
dz

dt
at t = .6 given

z = x sin(3y), x = e1.25t, y = π − 9t.

Round to 4 decimal places.
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Solution: Write

∂z

∂x
= sin(3y)

∂z

∂y
= 3x cos(3y)

dx

dt
= 1.25e1.25t dy

dt
= −9

Since we are asked to evaluate at t = .6,

x(.6) = e1.25(.6)

y(.6) = π − 9(.6)

Putting this together,

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

= sin(3(π − 9(.6)))
(
1.25e1.25(.6)

)
+ 3(e1.25(.6)) cos(3(π − 9(.6)))(−9)

= sin(3π − 16.2)(1.25e(.75))− 27 cos(3π − 16.2)

≈ −51.6285



Lesson 23: Extrema of Functions of Two Variables (I)

1. Extrema of Multivariable Functions

Just like with functions of a single variable, we consider how to find the minima
and maxima (plural of minimum and maximum, respectively) of functions of several
variables. We call the minima and maxima the extrema (plural of extremum).

Definition 58.

• A local (relative) minimum point is a point (x, y) such that the function
is the smallest in some region about (x, y)

• A local (relative) maximum point is a point (x, y) such that the function
is the largest in some region about (x, y)

There is also a notion of a global (absolute) minimum/maximum point,
which is the point (x, y) that makes the function the smallest/largest on the whole
graph. We do not address this concept in this class.

Figure 8. Functions of a Single Variable

Definition 59.

• A local (relative) minimum is the smallest function value in some area.

• A local (relative) maximum is the largest function value in some area.

Observe

extrema points

(x, y)

ordered pair

←→

extrema

f(x, y)

function value

,

and so extrema points are ordered pairs while extrema are function values.

247
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Figure 9. Functions of a Several Variables

Ex 1. A difference between functions of a single variable and functions of several
variables is that functions of several variables can have what are called “saddle points”.

Definition 60. The critical points of a function f(x, y) are the ordered pairs
(x0, y0) such that

fx(x0, y0) = 0 = fy(x0, y0).

Definition 61. The function

D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))2

is called the discriminant of f(x, y).

Second Derivative Test: Suppose (x0, y0) is a critical point of f . If

(1) D(x0, y0) > 0 and fxx(x0, y0) < 0, (x0, y0) is a local maximum point

(2) D(x0, y0) > 0 and fxx(x0, y0) > 0, (x0, y0) is a local minimum point

(3) D(x0, y0) < 0, then (x0, y0) is a saddle point

(4) D(x0, y0) = 0, the test is inconclusive (i.e., this test doesn’t give you
any information)

Examples.

1. Find and classify the critical points of

f(x, y) =
x3

3
+
y3

3
− y − x.

Solution: We apply the following steps.

Step 1: Find critical points

Critical points are points (x0, y0) that make both fx and fy equal to 0.
Write

fx(x, y) = x2 − 1 = (x− 1)(x+ 1)

fy(x, y) = y2 − 1 = (y − 1)(y + 1)

Hence, if fx = 0, then

(x− 1)(x+ 1) = 0 ⇒ x = ±1
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and if fy = 0, then

(y − 1)(y + 1) = 0 ⇒ y = ±1.

So, setting both fx and fy equal to zero, our critical points are

(x0, y0) = (1, 1), (1,−1), (−1, 1), (−1,−1).

Step 2: Find second derivatives

Write

fxx = 2x, fyy = 2y, and fxy = 0.

Step 3: Find discriminant

Our formula for the discriminant is

D = fxxfyy − (fxy)
2.

So,

D(x, y) = (2x)
↑
fxx

(2y)
↑
fyy

− ( 0
↑
fxy

)2 = 4xy.

Step 4: Apply test

We go through each critical point and apply the second derivative test.

Critical Point D(x0, y0) fxx(x0, y0) Classification

(1, 1) 4(1)(1) = 4 > 0 2(1) = 2 > 0 local min

(1,−1) 4(1)(−1) = −4 < 0 −−− saddle point

(−1, 1) 4(−1)(1) = −4 < 0 −−− saddle point

(−1,−1) 4(−1)(−1) = 4 > 0 2(−1) < 0 local max

2. Find and classify the critical points of

g(u, v) = u2v − uv − v2.

Solution: Again, we go through our steps.

Step 1: Find critical points

We have

gu = 2uv − v = v(2u− 1)

gv = u2 − u− 2v

Recall that our critical points are the (u0, v0) that make both gu and gv
equal to 0. We write

0 = gu = v(2u− 1).
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Here, we have a choice: either v = 0 or u =
1

2
. Moreover, we have

0 = gv = u2 − u− 2v ⇒ 2v = u2 − u.

At this point, it is not clear what our points (u0, v0) should be. This is
where we break into cases:

Case 1. v = 0

If v = 0, then 2v = u2 − u becomes

0 = u2 − u = u(u− 1).

So u = 0, 1. This means that two of our critical points are

(0
↑
u

, 0
↑
v

) and (1
↑
u

, 0
↑
v

).

(Because we were given g(u, v), the order is going to be (u, v).)

Case 2. u =
1

2

If u =
1

2
, then 2v = u2 − u becomes

2v =

(
1

2

)2

− 1

2
=

1

4
− 1

2
= −1

4
,

which implies

v = −1

8
.

Hence, our last critical point is(
1

2
,−1

8

)
.

Putting this all together, our critical points are

(0, 0), (1, 0), and

(
1

2
,−1

8

)
.

Step 2: Find second derivatives

We have

guu = 2v, gvv = −2, and guv = 2u− 1.

Step 3: Find discriminant

The formula for the discriminant is given by

D = guugvv − (guv)
2

which becomes

D(u, v) = (2v)
↑
guu

(−2)
↑
gvv

− (2u− 1︸ ︷︷ ︸
guv

)2 = −4v − (2u− 1)2.
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Step 4: Apply test

Write

D

(
1

2
,−1

8

)
= −4

(
−1

8

)
−
(

2

(
1

2

)
− 1

)2

=
1

2

guu

(
1

2
,−1

8

)
= 2

(
−1

8

)
= −1

4

D(0, 0) = −4(0)− (2(0)− 1)2 = −1

D(1, 0) = −4(0)− (2(1)− 1)2 = −1

Critical Point D(u0, v0) gxx(u0, v0) Classification(
1

2
,−1

8

)
1

2
> 0 −1

4
< 0 local max

(0, 0) −1 < 0 −−− saddle point

(1, 0) −1 < 0 −−− saddle point

3. Find the local minima and maxima of

f(x, y) = x2 + y2 − 2x+ 2y.

Solution: Observe that this question is different than the previous 2
examples. Before we were asked to classify the critical points, but now we
are asked to find the actual function values at the critical points. Our process,
fortunately, doesn’t change too much. We still need to find and classify the
critical points but then we need to plug them back into f(x, y) to determine
the function value.

Step 1: Find critical points

We have

fx = 2x− 2 and fy = 2y + 2.

Thus,

0 = fx = 2x− 2 ⇒ x = 1

and

0 = fy = 2y + 2 ⇒ y = −1.

This means our critical point is (1,−1).

Step 2: Find second derivatives

fxx = 2, fyy = 2, fxy = 0

Step 3: Find discriminant

D(x, y) = fxxfyy − (fxy)
2 = (2)(2)− (0)2 = 4

Step 4: Apply test
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Since D(1,−1) = 4 > 0 and fxx(1,−1) = 2 > 0, we have a local min at
(1,−1) and no local max.

Step 5: Determine function values

By the previous steps, we know that

f(1,−1) = (1)2 + (−1)2 − 2(1) + 2(−1) = 1 + 1− 2− 2 = −2

is a local minimum of f(x, y) (recall that a min or max is a function value).

4. Count the number of minima, maxima, and saddle points of

g(x, y) = −x
3

3
+ 2xy − y2

2
.

Solution: We go through our steps and then plug our points to find the
function values.

Step 1: Find critical points

gx = −x2 + 2y and gy = 2x− y
So

0 = gx = −x2 + 2y ⇒ x2 = 2y

and
0 = gy = 2x− y ⇒ 2x = y.

Since we have that y = 2x, we can substitute this into 2y = x2 which means

2(2x) = x2 ⇒ 4x = x2 ⇒ x = 0 or x = 4.

We break this down into cases.

Case 1. x = 0

If x = 0, then y = 2(0) = 0. Hence, one critical point is (0, 0).

Case 2. x = 4

If x = 4, then y = 2(4) = 8. Thus, another critical point is (4, 8).

Putting this together, our critical points are

(0, 0) and (4, 8).

Step 2: Find second derivatives

gxx = −2x, gyy = −1, and gxy = 2

Step 3: Find discriminant

D(x, y) = gxxgyy − (gxy)
2 = (−2x)(−1)− (2)2 = 2x− 4

Step 4: Apply test

We write

D(0, 0) = 2(0)− 4 = −4

D(4, 8) = 2(4)− 4 = 8− 4 = 4

gxx(4, 8) = −2(4) = −8
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Hence,

Critical Point D(x0, y0) gxx(x0, y0) Classification

(0, 0) −4 < 0 −−− saddle point

(4, 8) 4 > 0 −8 < 0 local max

Hence, we have 0 minimum, 1 maximum, and 1 saddle point .

2. Additional Examples

Examples.

1. Find all the local minima and maxima points of

f(x, y) = 3x2 − xy + 7y2 − 8x− 54y − 5.

Solution: We go through our steps.

Step 1: Find critical points

We have

fx = 6x− y − 8

fy = −x+ 14y − 54

Setting fx equal to 0,

0 = 6x− y − 8

⇒ y = 6x− 8

Setting fy equal to 0,

0 = −x+ 14y − 54

⇒ 54 = −x+ 14 (6x− 8)︸ ︷︷ ︸
y

= −x+ 84x− 112

⇒ 166 = 83x

⇒ x = 2

⇒ y = 6(2)− 8 = 4

Thus, our critical point is (2, 4).

Step 2: Find second derivatives

Write

fxx = 6, fyy = 14, and fxy = −1.

Step 3: Find discriminant
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The discriminant is given by

D = fxxfyy − (fxy)
2.

So,

D(x, y) = (6)
↑
fxx

(14)
↑
fyy

− (−1
↑
fxy

)2 = 84− 1 = 83.

Step 4: Apply test

We see that D(2, 4) > 0 and fxx(2, 4) > 0 which means that f has a

minima point at (2, 4) .

2. Find and classify the critical points of g(x, y) = x2 + xy +
1

32
y4 − 8 where

gx = 2x+ y and gy = x+
1

8
y3.

Solution: We go through our steps.

Step 1: Find critical points

Setting gx and gy equal to 0, we have

0 = 2x+ y︸ ︷︷ ︸
gx

⇒ y = −2x

0 = x+
1

8
y3︸ ︷︷ ︸

gy

= x+
1

8
(−2x
↑
y

)3

= x+
1

8
(−8x3)

= x− x3

= x(1− x2)

Now, we have three possible solutions to 0 = x(1− x2), either

x = 0, x = 1, or x = −1.

We check each of these cases.

Case 1. x = 0

If x = 0, the y = −2(0) = 0. We conclude one critical point is (0, 0).

Case 2. x = 1

If x = 1, then y = −2(1) = −2. Hence, another critical point is
(1,−2).
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Case 3. x = −1

If x = −1, then y = −2(−1) = 2. Thus, our final critical point is
(−1, 2).

Step 2: Find second derivatives

Write

gxx = 2, gyy =
3

8
y2, gxy = 1.

Step 3: Find discriminant

Our formula for the discriminant is

D = fxxfyy − (fxy)
2.

So,

D(x, y) = (2)
↑
gxx

(
3

8
y2

)
↑
gyy

− ( 1
↑
gxy

)2 =
3

4
y2 − 1.

Step 4: Apply test

Critical Point D(x0, y0) fxx(x0, y0) Classification

(0, 0) −1 < 0 −−− saddle point

(1,−2) 2 > 0 2 > 0 local min

(−1, 2) 2 > 0 2 > 0 local min

3. Find and classify the critical points of

f(x, y) = 16x4 + 8x+ 12y3 − y + 7.

Solution:

Step 1: Find critical points

We have

fx = 64x3 + 8

fy = 36y2 − 1



256 LESSON 23: EXTREMA OF FUNCTIONS OF TWO VARIABLES (I)

Setting fx and fy equal to 0, we have

0 = 64x3 + 8

⇒ −8 = 64x3

⇒ −1

8
= x3

⇒ 3

√
−1

8
= x

⇒ x = −1

2

and

0 = 36y2 − 1

⇒ 1 = 36y2

⇒ 1

36
= y2

⇒ ±1

6
= y

Hence, we see our critical points are(
−1

2
,
1

6

)
and

(
−1

2
,−1

6

)
.

Step 2: Find second derivatives

Write
fxx = 192x2, fyy = 72y, , fxy = 0.

Step 3: Find discriminant

The formula for the discriminant is

D = fxxfyy − (fxy)
2.

So,

D(x, y) = (192x2)
↑
fxx

(72y)
↑
fyy

− ( 0
↑
fxy

)2 = 13,824x2y.

Step 4: Apply test

Critical Point D(x0, y0) gxx(x0, y0) Classification(
−1

2
,
1

6

)
576 > 0 48 > 0 local min

(
−1

2
,−1

6

)
−576 < 0 −−− saddle point
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1. Solutions to In-Class Examples

Example 1. We are tasked with constructing a rectangular box with a volume
of 64 cubic feet. The material for the top costs 8 dollars per square foot, the material
for the sides costs 10 dollars per square foot, and the material for the bottom costs
4 dollars per square foot. To the nearest cent, what is the minimum cost for such a
box? (Round your answer to 2 decimal places.)

Solution: Let w be the width, h be the height, and l be the length of this box.

The volume of the box is given by V = whl. The goal here is to minimize the cost
function, not the volume. In fact, we are requiring that the volume be exactly 64
cubic feet. We’ll call this the constraint.

By the picture above, you should see the area of the top is lw, the area of the
bottom is lw, and the total area of the sides is 2wh + 2lh (this is because we are
not assuming the box has a square base so w and l may be different). Thus, by the
information we are given above, our cost function is

C(w, h, l) = 8 (lw)︸︷︷︸
area of

top

+10 (2wh+ 2lh)︸ ︷︷ ︸
area of
sides

+4 (lw)︸︷︷︸
area of
bottom

= 12lw + 20wh+ 20lh.

Unfortunately, this is a function of 3 variables and our tools only work for functions
of 2 variables. To resolve this issue, we use the constraint (lwh = 64) to rewrite the
cost function as a function of 2 variables.

Write l =
64

wh
. Substituting, we get

C(w, h) = 12

(
64

wh

)
w + 20wh+ 20

(
64

wh

)
h

=
768

h
+ 20wh+

1280

w
.

Since this is now a function of 2 variables, we can find the critical points.

257
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Differentiating,

Cw = 20h− 1280

w2
and Ch = −768

h2
+ 20w.

Recall that the critical points are the points (w, h) that make both Cw and Ch equal
to zero. So

Cw = 0

⇒ 20h− 1280

w2
= 0

⇒ 20h =
1280

w2

⇒ w2h =
1280

20
= 64

and

Ch = 0

⇒ 20w − 768

h2
= 0

⇒ 20w =
768

h2

⇒ h2w =
768

20
=

192

5
.

Now, we observe that
192

5
=

3

5
(64). This means that

h2w =
192

5
=

3

5
(64) =

3

5
w2h.

Since we are assuming the volume is 64 cubic inches, we must have w 6= 0 and h 6= 0.
So, we divide both sides by hw and our equation becomes

h =
3

5
w.

Then, because w2h = 64,

w2

(
3

5
w

)
= 64 ⇒ w3 =

5(64)

3
=

320

3
.

Thus,

w =
3

√
320

3

and so

h =
3

5
w =

3

5
3

√
320

3
.
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Our critical point is then

(w, h) =

(
3

√
320

3
,
3

5
3

√
320

3

)
.

Therefore, our cost is minimized at

C

(
3

√
320

3
,
3

5
3

√
320

3

)
=

768

3
5

3

√
320
3

+ 20

(
3

√
320

3

)(
3

5
3

√
320

3

)
+

1280

3

√
320
3

≈ $809.695

Note 62. Technically, you should check that this is actually a minimum by going
through the Second Derivative Test. But since this is the only critical point and,
in this context, it is much easier to increase a cost rather than minimize it, we can
assume that this is indeed a minimum. For word problems, if there is a single critical
point, then this is probably the point we need to find — else the problem itself is
poorly posed.

Example 2. The post office will accept packages whose combined length and girth
is at most 50 inches (girth is the total perimeter around the package perpendicular
to the length and the length is the largest of the 3 dimensions). What is the largest
volume that can be sent in a rectangular box? (Round your answer to the nearest
integer.)

Solution: Our goal is to maximize the volume V = lwh where l is the largest of
the 3 dimensions. The girth is then g = 2w + 2h. We are told that the combined
length and girth can be at most 50 inches, But, to maximize the volume, we will want
to maximize the girth as well (think about why this is true). Set l + g = 50.

Now, our volume function is a function of more than 2 variables so we need to
rewrite it in terms of 2 variables. We know that l+ g = 50 and that g = 2w + 2h, so

l = 50− g = 50− (2w + 2h)︸ ︷︷ ︸
g

= 50− 2w − 2h.

Thus, our volume function becomes

V = lwh = (50− 2w − 2h︸ ︷︷ ︸
l

)wh = 50wh− 2wh2 − 2w2h.

This is the function we want to maximize. We find its critical points.

Find critical points: Vw = 50h− 2h2 − 4wh which means

0 = Vw = 50h− 2h2 − 4wh = h(50− 2h− 4w).

So either h = 0 or 50− 2h− 4w = 0. Because we can’t let one of our dimensions be
0, we throw out the case where h = 0. From 50− 2h− 4w = 0, we get

0 = 50− 2h− 4w

⇒ 0 = 25− h− 2w

⇒ h = 25− 2w
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Vh = 50w − 4wh− 2w2 means

0 = Vh = 50w − 4wh− 2w2 = w(50− 4h− 2w),

so either w = 0 or 50− 4h− 2w = 0. Again, we can’t let one of our dimensions be 0
so we throw out w = 0. Hence, we have 50− 4h− 2w = 0 which means

0 = 50− 4h− 2w

⇒ 0 = 25− 2h− w

⇒ w = 25− 2h

= 25− 2 (25− 2w)︸ ︷︷ ︸
h

= 25− 50 + 4w

= −25 + 4w

⇒ −3w = −25

⇒ w =
25

3
.

Thus,

h = 25− 2w = 25− 2

(
25

3

)
︸ ︷︷ ︸

w

= 25− 2(25)

3
=

25

3
.

Our critical point is then (w, h) =

(
25

3
,
25

3

)
.

Finally, we need to plug this into our function for volume. Since l = 50−2w−2h,

l = 50− 2

(
25

3

)
− 2

(
25

3

)
=

150

3
− 50

3
− 50

3
=

50

3
.

Thus, our maximum volume is

V =

(
50

3

)
︸ ︷︷ ︸

l

(
25

3

)
︸ ︷︷ ︸

w

(
25

3

)
︸ ︷︷ ︸

h

=
31, 250

27
≈ 1157 in3 .

Example 3. A biologist must make a medium to grow a type of bacteria. The
percentage of salt in the medium is given by S = 0.01x2y2z, where x, y, and z are
amounts in liters of 3 different nutrients mixed together to create the medium. The
ideal salt percentage for this type of bacteria is 48%. The costs of x, y, and z nutrient
solutions are respectively, 6, 3, and 8 dollars per liter. Determine the minimum cost
that can be achieved. (Round your answer to the nearest 2 decimal places.)

Solution: We want to minimize the cost function, given by

C(x, y, z) = 6x+ 3y + 8z
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such that S(x, y, z) = .48. We want to reduce our cost function to a function of 2
variables, which we do using S. Write

.48 = 0.01x2y2z ⇒ z =
48

x2y2
.

Substituting this into our cost function, we get

C(x, y) = 6x+ 3y + 8

(
48

x2y2

)
︸ ︷︷ ︸

z

= 6x+ 3y +
384

x2y2
.

Our next step is to find the critical points.

Find critical points: Cx = 6− 2(384)

x3y2
= 6− 768

x3y2
, so Cx = 0 implies

0 = 6− 768

x3y2

⇒ 768

x3y2
= 6

⇒ 128 = x3y2

Cy = 3− 768

x2y3
, so Cy = 0 implies

0 = 3− 768

x2y3

⇒ 768

x2y3
= 3

⇒ 256 = x2y3

Now, since 2(128) = 256, we see by our work above that

2 (x3y2)︸ ︷︷ ︸
128

= x2y3︸︷︷︸
256

,

Hence, either x = 0 or y = 0 or 2x = y. Because we want S(x, y, z) = .48 6= 0, we
can’t have x = 0 or y = 0. So we have 2x = y.

Since

256 = x2y3

⇒ 256 = x2(2x
↑
y

)3 = 8x5

⇒ 32 = x5

⇒ x = 2

Then y = 2(2) = 4 implies our critical point is then (2, 4).
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The function value at (2, 4) is

C(2, 4) = 6(2) + 3(4) +
384

(2)2(4)2
= 12 + 12 +

384

64
= 12 + 12 + 6 = 30 .

Example 4. A manufacturer is planning to sell a new product at the price of
310 dollars per unit and estimates that if x thousand dollars is spent on development
and y thousand dollars is spent on promotion, consumers will buy approximately

270y

y + 4
+

300x

x+ 9
units of the product. If manufacturing costs for the product are 220

dollars per unit, how much should the manufacturer spend on development and how
much on promotion to generate the largest possible profit? Round your answer to
the nearest cent.

Solution: Profit is the difference of revenue and cost. Here, the revenue is

.31

(
270y

y + 4
+

300x

x+ 9

)
because it is the number of units sold times their price and

we are measuring our dollars in thousands. The cost is .22

(
270y

y + 4
+

300x

x+ 9

)
+ x+ y

because the cost is the cost of each unit times the number sold but we also need to
consider what is spent on development (x) and promotion (y). Thus, the function we
want to maximize is

Profit = P (x, y) = .31

(
270y

y + 4
+

300x

x+ 9

)
−
[
.22

(
270y

y + 4
+

300x

x+ 9

)
+ x+ y

]
= .31

(
270y

y + 4
+

300x

x+ 9

)
− .22

(
270y

y + 4
+

300x

x+ 9

)
− x− y

= .09

(
270y

y + 4
+

300x

x+ 9

)
− x− y

=
24.3y

y + 4
+

27x

x+ 9
− x− y

To maximize P (x, y), we need to find its critical points.

Find the critical points: Differentiating with respect to x, we get

Px =
(x+ 9)(27)− (27x)(1)

(x+ 9)2
− 1

=
27x+ 243− 27x

(x+ 9)2
− 1

=
243

(x+ 9)2
− 1

and, with respect to y,

Py =
(y + 4)(24.3)− (24.3y)(1)

(y + 4)2
− 1
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=
24.3y + 97.2− 24.3y

(y + 4)2
− 1

=
97.2

(y + 4)2
− 1

Setting Px and Py equal to 0, we see that

0 = Px =
243

(x+ 9)2
− 1

⇒ 1 =
243

(x+ 9)2

⇒ (x+ 9)2 = 243

⇒ x = ±
√

243− 9

and

0 = Py =
97.2

(y + 4)2
− 1

⇒ 1 =
97.2

(y + 4)2

⇒ (y + 4)2 = 97.2

⇒ y = ±
√

97.2− 4.

Since it doesn’t make sense for x or y to be negative, we conclude our critical point is

(x, y) = (
√

243− 9,
√

97.2− 4).

This tells us that the developer should spend 6588.46 dollars on development and
5859.00 dollars on promotion since x and y are measured in thousands. Be sure to
multiply by 1000 and then round.

2. Additional Examples

Examples.

1. Find the number of minima, maxima, and saddle points of

f(x, y) = −20 + 2y + 6x2y + 6x2 +
7

4
y2.

Solution: We go through our steps.

Step 1: Find critical points
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We have

fx = 12xy + 12x

fy = 2 + 6x2 +
7

2
y

Setting fx equal to 0, we have

0 = 12xy + 12x = 12x(y + 1).

Hence, we see that either x = 0 or y = −1. We break this into cases.

Case 1. x = 0

Since 0 = 2 + 6x2 +
7

2
y = 2 + 6(0)2 +

7

2
y, we have

0 = 2 +
7

2
y

⇒ −2 =
7

2
y

⇒ −4

7
= y

So, one critical point is

(
0,−4

7

)
.

Case 2. y = −1

Since 0 = 2 + 6x2 +
7

2
y = 2 + 6x2 +

7

2
(−1), we have

0 = 2 + 6x2 − 7

2

= −3

2
+ 6x2

⇒ 3

2
= 6x2

⇒ 3

12
= x2

⇒ 1

4
= x2

⇒ ±1

2
= x

Thus, our other critical points are

(
1

2
,−1

)
and

(
−1

2
,−1

)
.

Step 2: Find second derivatives
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Write

fxx = 12y + 12, fyy =
7

2
, fxy = 12x.

Step 3: Find discriminant

The formula for the discriminant is given by

D = fxxfyy − (fxy)
2.

So,

D(x, y) = (12y + 12︸ ︷︷ ︸
fxx

)

(
7

2

)
↑
fyy

− (12x
↑
fxy

)2 = 42y + 42− 144x2

Step 4: Apply test

Critical Point D(x0, y0) fxx(x0, y0) Classification(
0,−4

7

)
18 > 0

36

7
> 0 local min

(
1

2
,−1

)
−36 < 0 −−− saddle point

(
−1

2
,−1

)
−36 < 0 −−− saddle point

2. In a certain experiment to find out the ideal studying conditions in a library,
the performance of the subject is influenced by two types of stimulus, noise
and temperature, measured in positive units of x and y, respectively. Their
performance is measured by the function

f(x, y) = 16 + 7xye6−7x2−8y2 .

How many units of each stimulus results in the maximum performance?
Round your answer to 4 decimal places.

Solution: We need to find the critical points of f , keeping in mind that
we want x, y > 0. The the derivative with respect to either variable will
require both the chain rule and the product rule. Starting by differentiating
with respect to x, write

fx =
∂

∂x
(16 + 7xye6−7x2−8y2)

= 7xy

[
∂

∂x
e6−7x2−8y2

]
+

[
∂

∂x
7xy

]
e6−7x2−8y2

= 7xy

[
∂

∂x
(6− 7x2 − 8y2)

]
e6−7x2−8y2 + 7ye6−7x2−8y2

= 7xy(−14x)e6−7x2−8y2 + 7ye6−7x2−8y2
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= (−98x2 + 7)ye6−7x2−8y2

Next,

fy =
∂

∂y
(16 + 7xye6−7x2−8y2)

= 7xy

[
∂

∂y
e6−7x2−8y2

]
+

[
∂

∂y
7xy

]
e6−7x2−8y2

= 7xy

[
∂

∂y
(6− 7x2 − 8y2)

]
e6−7x2−8y2 + 7xe6−7x2−8y2

= 7xy(−16y)e6−7x2−8y2 + 7xe6−7x2−8y2

= (−112y2 + 7)xe6−7x2−8y2

Observe that e6−7x2−8y2 6= 0 for any value of x, y. Hence, if we set fx, fy
equal to zero, we may immediately simplify:

fx = (−98x2 + 7)ye6−7x2−8y2 = 0

⇒ (−98x2 + 7)y = 0

fy = (−112y2 + 7)xe6−7x2−8y2 = 0

⇒ (−112y2 + 7)x = 0

Now, if (−98x2 + 7)y = 0, then either

−98x2 + 7 = 0 or y = 0.

If −98x2 + 7 = 0, then

0 = −98x2 + 7

⇒ 98x2 = 7

⇒ x2 =
1

14

⇒ x = ±
√

1

14

Because we want x, y > 0, we conclude that

x =

√
1

14
.

Next, if (−112y2 + 7)x = 0, then either

−112y2 + 7 = 0 or x = 0.
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If −112y2 + 7 = 0, then

0 = −112y2 + 7

⇒ 112y2 = 7

⇒ y2 =
1

16

⇒ y = ±
√

1

16

Since we assume that x, y > 0, we have

y =

√
1

16
.

Therefore, our critical point is(√
1

14
,

√
1

16

)
= (.2673, .2500) .





Lesson 25: Lagrange Multipliers - Constrained Min/Max (I)

1. Lagrange Multipliers

Lagrange multipliers is another method of finding minima and maxima of functions
of more than one variable. This method applies when we are finding extrema that is
subject to some constraint.

The Method of Lagrange Multipliers: Suppose we want to minimize or maximize
a function f(x, y) subject to the constraint g(x, y) = C. Introduce a “dummy”
variable, λ, and solve the system of equations

fx(x, y) = λgx(x, y)

fy(x, y) = λgy(x, y)

g(x, y) = C

for (x, y).

Remark 63. In this setup, our method only works for functions of 2 variables. If
a problem is presented with more than 2 variables or if we are asked to classify critical
points, then we need to use the method from the previous lessons. However, if the
problem contains key words like “subject to” or has only 2 variables and a constraint,
then this method applies.

Ex 1. Maximize the area of a rectangular garden subject to the constraint that
its perimeter is 100 ft.

Solution: Let x be the length and y the width of the garden. Then the function
we are maximizing is

f(x, y) = xy.

But this is subject to the constraint that

2x+ 2y︸ ︷︷ ︸
perimeter

= 100.

By our method, we set up our system of equations:

y
↑
fx

= λ(2)
↑
gx

= 2λ

x
↑
fy

= λ(2)
↑
gy

= 2λ

2x+ 2y︸ ︷︷ ︸
g(x,y)

= 100︸︷︷︸
C

We solve for x and y (which means we eliminate λ).

269
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Since x = 2λ and y = 2λ, we see that given 2x+ 2y = 100,

100 = 2(2λ
↑
x

) + 2(2λ
↑
y

) = 4λ+ 4λ = 8λ.

Thus, λ =
100

8
=

25

2
which means

x = 2

(
25

2

)
︸ ︷︷ ︸

λ

= 25 and y = 2

(
25

2

)
︸ ︷︷ ︸

λ

= 25.

We conclude that the area is maximized when x = 25 and y = 25 and the
maximum area of the garden is 25(25) = 625 ft2.

Question: How do we know this is a maximum and not a minimum? If x = 1,
y = 49, then the area is 49 which is certainly less than 625. Hence, in this context,
we can safely conclude that this is a maximum. For these problems, you always need
to consider whether your answer makes sense in context.

Note 64. Lagrange multipliers will never tell you if there is a saddle point because
that involves classifying critical points. Critical points are different than solutions to
the system of equations for Lagrange multipliers.

Examples.

1. Minimize f(x, y) = (x+ 1)2 + (y − 2)2 subject to g(x, y) = x2 + y2 = 125.

Solution: Taking derivatives, we see that

fx = 2(x+ 1), fy = 2(y − 2), gx = 2x, gy = 2y.

Setting up our equations

2(x+ 1) = λ(2x) = 2λx

2(y − 2) = λ(2y) = 2λy

x2 + y2 = 125

The method of Lagrange multipliers calls for a little creativity and the key
is staying flexible. Focus on the first two equations. We have

2(x+ 1) = 2λx ⇒ x+ 1 = λx

2(y − 2) = 2λy ⇒ y − 2 = λy

Thus,

x+ 1 = λx

⇒ x− λx+ 1 = 0

⇒ x(1− λ) + 1 = 0

⇒ x(1− λ) = −1

y − 2 = λy

⇒ y − λy − 2 = 0

⇒ y(1− λ)− 2 = 0

⇒ y(1− λ) = 2
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From this we gather that x, y 6= 0 else these equations can’t be true. This
means that we may divide by x and y without losing solutions to the system.
Always be careful when dividing through by a variable. If you don’t know
that the variable is non-zero, then you will lose solutions.

Next,

−1

x
= 1− λ =

2

y
,

and so, in particular, −1

x
=

2

y
. By cross-multiplication this becomes

−y = 2x ⇒ y = −2x.

By our constraint, g(x, y) = x2 + y2 = 12. We evaluate at y = −2x:

125 = x2 + y2

= x2 + (−2x)2

= x2 + 4x2

= 5x2

⇒ 25 = x2

We conclude x = ±5, which implies y = −2(±5) = ∓10. Thus, our extrema
points are

(5,−10) and (−5, 10).

Evaluating f(x, y) at these points,

f(5,−10) = (5 + 1)2 + (−10− 2)2 = 62 + (−12)2 = 36 + 144 = 180←− Max

f(−5, 10) = (−5 + 1)2 + (10− 2)2 = (−4)2 + (8)2 = 16 + 64 = 80←− Min

Therefore, the minimum is 80 because it is the smaller of the two values.

2. Find the minimum value of x2ey
2

subject to 2y2 + 2x = 6.

Solution: Whatever function we are minimizing or maximizing is our
f(x, y) and the constraint is g(x, y). Thus, we have

f(x, y) = x2ey
2

and g(x, y) = 2y2 + 2x = 6.

Next, we find derivatives:

fx = 2xey
2

, fy = 2x2yey
2

, gx = 2, gy = 4y.

We set up our equations to get

2xey
2

= 2λ

2x2yey
2

= 4λy

2y2 + 2x = 6
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By the first equation, we see that

2xey
2

= 2λ ⇒ xey
2

= λ.

Substituting this into the second equation,

2yx2ey
2

= 4 (xey
2

)︸ ︷︷ ︸
λ

y.

We may divide both sides by 2ey
2

because this is never 0. Thus, our equation
becomes

x2y = 2xy.

Subtracting 2xy from both sides

x2y − 2xy = 0 ⇒ (x2 − 2x)y = 0.

Hence, either y = 0 or

x2 − 2x = 0 ⇒ x(x− 2) = 0 ⇒ x = 0 or x = 2.

We check all three cases:

Case 1. y = 0

If y = 0, then our constraint implies that

0 + 2x = 6 ⇒ x = 3.

Thus, one solution is (3, 0).

Case 2. x = 0

If x = 0, then by our constraint:

2y2 + 0 = 6 ⇒ y2 = 3 ⇒ y = ±
√

3.

So two of our solutions are (0,
√

3) and (0,−
√

3).

Case 3. x = 2

If x = 2, then

2y2 + 2(2) = 6

⇒ 2y2 = 2

⇒ y2 = 1

⇒ y = ±1.

This adds another two solutions: (2, 1) and (2,−1).

Putting this all together, our solutions are

(3, 0), (0,
√

3), (0,−
√

3), (2, 1), (2,−1).

Finally, we check the function values:

f(3, 0) = (3)2e(0)2 = 9(1) = 9

f(0,
√

3) = (0)2e(
√

3)2 = 0←− min
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f(0,−
√

3) = (0)2e(−
√

3)2 = 0←− min

f(2, 1) = (2)2e(1)2 = 4e←− max

f(2,−1) = (2)2e(−1)2 = 4e←− max

Therefore, the function’s minimum value is 0 .

3. Find the minimum value of f(x, y) = y2 − x2 − 4x subject to y = 8− 2x.

Solution: Our f(x, y) = y2 − x2 − 4x but we need to determine our
g(x, y). We are told our constraint is y = 8 − 2x and, adding 2x to both
sides, we have 2x+y = 8. Hence, g(x, y) = 2x+y = 8. Next, we differentiate:

fx = −2x− 4, fy = 2y, gx = 2, gy = 1.

Setting up our equations,

−2x− 4 = 2λ

2y = λ

2x+ y = 8

We know immediately that 2y = λ, so, substituting into the first equation,
we get

−2x− 4 = 2 (2y)︸︷︷︸
λ

= 4y.

Dividing both sides by 4, we get

y = −1

2
x− 1.

According to our constraint,

8 = 2x+ y = 2x+

(
−1

2
x− 1

)
︸ ︷︷ ︸

y

= 2x− 1

2
x− 1 =

3

2
x− 1.

We solve 8 =
3

2
x− 1 for x:

8 =
3

2
x− 1

⇒ 9 =
3

2
x

⇒ 18 = 3x

⇒ 6 = x
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Since x = 6 and y = −1

2
x − 1, we have y = −1

2
(6) − 1 = −3 − 1 = −4.

Thus, our solution is (6,−4). Plugging this into the function,

f(6,−4) = (−4)2 − (6)2 − 4(6) = 16− 36− 24 = −44 .

Note 65. We should check that this is actually a minimum as opposed to
a maximum. To do this, we check any other point that satisfies 2x+y = 8,
say (0, 8). If −44 is a minimum, then we must have −44 < f(0, 8) = 82 −
(0)2−4(0) = 64. So we can rest easy knowing that this really is the minimum
of the function subject to the given constraint.

4. Find the maximum value of f(x, y) =
2

3
x3/2y subject to x = 10− y.

Solution: Again, we need to rearrange our constraint to determine our
g(x, y). Adding y to both sides of x = 10−y, we get x+y = 10 which means

g(x, y) = x+ y = 10.

Next, we differentiate:

fx = x1/2y, fy =
2

3
x3/2, gx = 1, gy = 1.

Now, we set up our equations:

x1/2y = λ

2

3
x3/2 = λ

x+ y = 10

Since λ = x1/2y and λ =
2

3
x3/2, we can write

x1/2y =
2

3
x3/2.

Subtracting
2

3
x3/2 from both sides, we get

0 = x1/2y − 2

3
x3/2

= x1/2

(
y − 2

3
x

)

This implies we have two solutions, either x1/2 = 0 ⇒ x = 0 or y =
2

3
x.

We check both cases.

Case 1. x = 0

If x = 0, our constraint implies that 0 + y = 10 ⇒ y = 10. Hence,
one solution is (0, 10).
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Case 2.
2

3
x = y

If
2

3
x = y, then

10 = x+ y = x+
2

3
x =

5

3
x ⇒ 10 =

5

3
x ⇒ x = 6.

Thus, since y =
2

3
(6) = 4, one solution is (6, 4).

Putting this together, we have two solutions:

(0, 10) and (6, 4).

We check the function values at these points:

f(0, 10) =
2

3
(0)3/2(10) = 0←− min

f(6, 4) =
2

3
(6)3/2(4) = 16

√
6←− max

Therefore, the maximum value is 16
√

6 .

2. Additional Examples

Examples.

1. Find the extrema of f(x, y) = e−xy subject to 9x2 + 4y2 ≤ 72.

Solution: This is a slightly different problem than what we have encoun-
tered so far. Here, our constraint is an inequality rather than an equality.
Fortunately, this is not as daunting as it may appear.

We break this problem into two parts: (1) we find the critical points of
f(x, y) which are contained in the region described by g(x, y) = 9x2 + 4y2 <
72 and (2) we apply the Lagrange multiplier method to f(x, y) subject to
g(x, y) = 9x2 + 4y2 = 72.

(1) The derivatives of f(x, y) are

fx = −ye−xy and fy = −xe−xy.

Setting these equal to 0, we see that x = 0, y = 0 because e−xy is never
0. Since the point (0, 0) satisfies g(x, y) = 9x2 + 4y2 < 72, we include
this point in our list of solutions.

(2) Now, we assume that g(x, y) = 9x2 + 4y2 = 72 and apply the Lagrange
multiplier method. The derivatives of g(x, y) are

gx = 18x and gy = 8y.

Setting up our system of equations,
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−ye−xy = 18λx

−xe−xy = 8λy

9x2 + 4y2 = 72

Next, we solve for (x, y).

We observe that if any of x, y, or λ are 0, then x = 0 and y = 0. But
this case has already been covered, so we assume that x, y, λ 6= 0. This
means we can divide by x and y to get λ by itself. Write

− y

18x
e−xy = λ and − x

8y
e−xy = λ.

Thus,

− y

18x
e−xy = − x

8y
e−xy.

Because −e−xy is never zero, we may divide through on both sides to
get

y

18x
=

x

8y
.

Cross-multiplying:

8y2 = 18x2 ⇒ y2 =
18

8
x2 =

9

4
x2.

Now, we return to our constraint and substitute for y2,

72 = 9x2 + 4y2

= 9x2 + 4

(
9

4
x2

)
︸ ︷︷ ︸

y2

= 9x2 + 9x2

= 18x2.

Solving for x, we find x = ±2. Since y2 =
9

4
x2, we get y2 = 9 ⇒ y =

±3. Therefore, we get the following 4 solutions:

(2, 3), (2,−3), (−2, 3), (−2,−3).

We need to check the function values at each of our solutions from both
(1) and (2):

f(0, 0) = e−(0)(0) = 1

f(2, 3) = e−(2)(3) = e−6 ←− min

f(2,−3) = e−(2)(−3) = e6 ←− max
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f(−2, 3) = e−(−2)(3) = e6 ←− max

f(−2,−3) = e−(−2)(−3) = e−6 ←− min

Thus, the minimum function value is e−6 and the maximum function

value is e6 .

2. Let f(x, y) = ln(3xy2). Find the maximum value of the function subject to
5x2 + 4y2 = 8. Round your answer to 4 decimal places.

Solution: We maximize f(x, y) = ln(3xy2) subject to the constraint
g(x, y) = 5x2 + 4y2 = 8. Our derivatives are

fx =
3y2

3xy2
=

1

x
, fy =

6xy

3xy2
=

2

y
, gx = 10x, gy = 8y.

Observe that x > 0 else f is not defined.

We set up our system of equations:

1

x
= 10λx

2

y
= 8λy

5x2 + 4y2 = 8

We know that x, y 6= 0 else f(x, y) is not defined and that λ 6= 0 else the
first two equations won’t be satisfied.

Solving for λ in the first equation, we have

1

10x2
= λ.

Substituting into the second equation,

2

y
= 8

(
1

10x2

)
︸ ︷︷ ︸

λ

y =
4y

5x2
⇒ 2

y
=

4y

5x2
.

Cross-multiplying, we get

10x2 = 4y2 ⇒ 5x2 = 2y2 ⇒ x2 =
2

5
y2.

Substituting this into the third equation, we have

8 = 5x2 + 4y2

= 5

(
2

5
y2

)
+ 4y2

= 2y2 + 4y2 = 6y2
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⇒ 8

6
= y2

⇒ 4

3
= y2

⇒ ±
√

4

3
= y

Then, since x2 =
2

5
y2, we have

x2 =
2

5

(
±
√

4

3

)2

=
2

5

(
4

3

)
=

8

15

⇒ x = ±
√

8

15

But since x > 0, we only have two solutions:(√
8

15
,

√
4

3

)
and

(√
8

15
,−
√

4

3

)
.

Finally, we check our function value at these points:

ln

3

√
8

15

(
±
√

4

3

)2
 = ln

(
3

√
8

15

(
4

3

))

= ln

(
4

√
8

15

)
≈ 1.0720



Lesson 26: Lagrange Multipliers — Constrained Min/Max
(II)

1. Solutions to In-Class Examples

Example 1. There is an ant on a circular heated plate which has a radius of 10
meters. Let x and y be the meters from the center of the plate measured horizontally
and vertically respectively. Suppose the temperature of the plate is given by f(x, y) =
x2− y2 + 150◦ F and that the ant is walking along the edge of the plate. What is the
warmest spot the ant can find?

Solution: We want to maximize the function f(x, y) = x2 − y2 + 150 subject to
the constraint x2 + y2 = 100 because the ant is walking around the edge of a plate
with a radius of 10 meters. Hence, g(x, y) = x2 + y2 = 100. Differentiating,

fx = 2x, fy = −2y, gx = 2x, gy = 2y.

So we set up our equations:

2x = 2λx

−2y = 2λy

x2 + y2 = 100

This is the system we need to solve.

From the first equation, we get

2x = 2λx

⇒ x = λx

⇒ 0 = λx− x

⇒ 0 = x(λ− 1)

The first equation implies that either x = 0 or λ = 1. Similarly, the second equation
implies

−2y = 2λy

⇒ y = −λy

⇒ y + λy = 0

⇒ y(1 + λ) = 0

which means either y = 0 or λ = −1.

279
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Now, λ cannot be 1 and −1 at the same time, so we have a choice. If λ = 1, then
y = 0. By our constraint, this implies x = ±10. So (±10, 0) are points we ought to
check. If λ = −1, then x = 0. Thus, our constraint implies y = ±10. So the other
points we need to check are (0,±10).

Putting this together, we have

f(10, 0) = (±10)2 − 02 + 150 = 100 + 150 = 250← Max

f(0, 10) = 02 − (±10)2 + 150 = 50← Min.

This means that our answer is f(±10, 0) = 250◦ F .

Example 2. A rectangular box with a square base is to be constructed from
material that costs $5/ft2 for the bottom, $4/ft2 for the top, and $10/ft2 for the
sides. Find the box of the greatest volume that can be constructed for $216. Round
your answer to 4 decimal places.

Solution: Since we are assuming the box has a square base, we see its volume
is given by V = w2h where w is the width and h is the height. Our cost function is
then given by

C(w, h) = 5w2︸︷︷︸
cost of
bottom

+ 4w2︸︷︷︸
cost of

top

+ 10(4wh)︸ ︷︷ ︸
cost of
sides

= 9w2 + 40wh.

Moreover, we are told that our cost will be $216. Therefore, in this context our volume
acts as our f and the cost function acts as our g. This is to say we are maximizing
the volume subject to the constraint C(w, h) = 216.

Differentiating, we get

Vw = 2wh, Vh = w2, Cw = 18w + 40h, Ch = 40w.

Thus, the system we need to solve is

2wh = λ(18w + 40h)

w2 = λ(40w) = 40λw

9w2 + 40wh = 216.

We note that because we need our box to have some volume, we must have w 6= 0
and h 6= 0. Given w2 = 40λw, we are able to divide through by w because we know it

is nonzero. Therefore, w = 40λ⇒ λ =
w

40
. Going to the first equation, we substitute:

2wh = λ(18w + 40h)

=
w

40
(18w + 40h)

=
9

20
w2 + wh.

Therefore, by subtracting wh from both sides we get wh =
9

20
w2. Again, w 6= 0 so

h =
9

20
w. Since we have a relationship between w and h that doesn’t involve λ, we
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plug this back into our constraint to get

216 = 9w2 + 40w

(
9

20
w

)
︸ ︷︷ ︸

h

= 9w2 + 18w2

= 27w2

⇒ w2 =
216

27

⇒ w =

√
216

27
=
√

8 = 2
√

2.

This means h =
9

20
(2
√

2)︸ ︷︷ ︸
w

=
9
√

2

10
. Therefore, the point we need to check is

(
2
√

2,
9
√

2

10

)
. The maximum volume is

V

(
2
√

2,
9
√

2

10

)
=
(

2
√

2
)2
(

9
√

2

10

)
=

72
√

2

10
=

36
√

2

5
≈ 10.1823 ft3 .

Example 3. A rectangular building with a square front is to be constructed of
materials that cost $10 per ft2 for the flat roof, $20 per ft2 for the sides and back,
and $15 per ft2 for the glass front. We will ignore the bottom of the building. If
the volume of the building is 10,000 ft3, what dimensions will minimize the cost of
materials?

Solution: Observe that we are asked to find the dimensions which minimize the
cost. We will use the same method but as an answer we need to state dimensions
instead of a minimal cost.

Because we assume the building has a square front, we know that two of the
dimensions are the same. So we can write V = wh2 where w is the width and h is
the height. Then, our cost function is given by

C(w, h) = 10wh︸ ︷︷ ︸
top

+ 20(h2 + 2wh)︸ ︷︷ ︸
sides and back

+ 15h2︸︷︷︸
front

.

Simplifying, this becomes

C(w, h) = 35h2 + 50wh.

Because this is subject to the constraint V = wh2 = 10,000, we see that the cost acts
as our f and the volume acts as our g, which is to say we are minimizing the cost
subject to the constraint that the volume is 10,000 ft3. Differentiating,

Cw = 50h, Ch = 70h+ 50w, Vw = h2, Vh = 2wh.

Now, we the system we need to solve is
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50h = λh2

70h+ 50w = 2λwh

wh2 = 10,000

We note that because our volume is nonzero, w 6= 0 and h 6= 0. Thus, 50h =

λh2 ⇒ 50 = λh. Moreover, λ =
50

h
. The second equation then implies

70h+ 50w = 2λwh

⇒ 70h+ 50w = 2

(
50

h

)
↑
λ

wh = 100w

Subtracting 50w from both sides, we get 70h = 50w ⇒ w =
7

5
h. Returning to our

constraint,

10,000 = wh2 =
7

5
h(h2) =

7

5
h3 ⇒ 50,000

7
= h3 ⇒ h =

3

√
50,000

7
.

So w =
7

5
3

√
50,000

7
.

Thus, the dimensions that minimize the cost are

w =
7

5
3

√
50,000

7
and h = 3

√
50, 000

7
.

Example 4. On a certain island, at any given time, there are R hundred rats
and S hundred snakes. Their populations are related by the equation

(R− 16)2 + 20(S − 16)2 = 81.

What is the maximum combined number of rats and snakes that could ever be on the
island at the same time? (Round your answer to the nearest integer).

Solution: Let f(R, S) = R+ S (which is the total number of rats and snakes in
hundreds) and g(R, S) = (R− 16)2 + 20(S − 16)2 (which is our constraint function).
Differentiating,

fR = 1, fS = 1, gR = 2(R− 16), gS = 40(S − 16).

Then the system we need to solve is

1 = 2λ(R− 16)

1 = 40λ(S − 16)

(R− 16)2 + 20(S − 16)2 = 81.

The first two equations mean we can write

2λ(R− 16) = 1 = 40λ(S − 16).
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This implies that λ 6= 0 and so dividing through by 2λ we get

R− 16 = 20(S − 16).

Therefore, returning to our constraint, we find

81 = (R− 16)2 + 20(S − 16)2

= (20(S − 16))2 + 20(S − 16)2

= 400(S − 16)2 + 20(S − 16)2

= 420(S − 16)2.

Thus, (S − 16)2 =
81

420
⇒ S − 16 = ± 9√

420
. Further, R − 16 = 20

(
± 9√

420

)
.

Finally, we get

R = 20

(
9√
420

)
+ 16 ≈ 24.783 and S =

9√
420

+ 16 ≈ 16.439

and

R = −20

(
9√
420

)
+ 16 ≈ 7.217 and S = − 9√

420
+ 16 ≈ 15.561

Taking the larger R and larger S, the maximum combined number of rats and snakes
will be

f

20

(
9√
420

)
+ 16︸ ︷︷ ︸

R

,
9√
420

+ 16︸ ︷︷ ︸
S

 = 20

(
9√
420

)
+ 16 +

9√
420

+ 16 ≈ 41.2222

Since we are measuring in terms of hundreds, this means that we have 4122 rats and snakes .

2. Additional Examples

Examples.

1. Suppose Arjun has exactly 24 hours to study for an exam and, without
preparation he will get 200 points out of 1000 total exam points. Suppose
he estimates that his exam score will improve by x(37−x) points if he reads
lecture notes for x hours and y(53 − y) if he solves review problems for y
hours. However, due to fatigue, he will lose (x + y)2 points. What is the
maximum score Arjun can obtain if he uses the entire 24 hours to study?
Round your answer to the nearest hundredth.
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Solution: We want to maximize Arjun’s score, which is given by the
function

f(x, y) = 200 + x(37− x) + y(53− y)− (x+ y)2

= 200 + 37x− x2 + 53y − y2 − (x2 + 2xy + y2)

= 200 + 37x− x2 + 53y − y2 − x2 − 2xy − y2

= 200 + 37x+ 53y − 2xy − 2x2 − 2y2

Our constraint is x + y = 24 because we assume that Arjun uses the entire
24 hours to study. Our derivatives are

fx = 37− 2y − 4x, fy = 53− 2x− 4y, gx = 1, gy = 1.

We set up our system of equations:

37− 2y − 4x = λ

53− 2x− 4y = λ

x+ y = 24

The first two equations imply that

37− 2y − 4x = 53− 2x− 4y

⇒ −2y = 53− 37− 2x+ 4x− 4y

⇒ −2y + 4y = 16 + 2x

⇒ 2y = 16 + 2x

⇒ y = 8 + x

Substituting this into the last equation,

24 = x+ y

= x+ (8 + x)︸ ︷︷ ︸
y

= 2x+ 8

⇒ 24 = 2x+ 8

⇒ 16 = 2x

⇒ 8 = x

Then, because y = 8 + x, we have y = 8 + 8 = 16.

Our solution is (8, 16).

Arjun’s maximum score is then given by

f (8, 16) = 200 + 8 (37− 8) + 16 (53− 16)− (8 + 16)2

= 200 + 8(29) + 16(37)− (24)2

= 448 points
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2. Suppose an artist sells sketches of her cat and dog online and that she notices
she can make a profit of

p(x, y) = x3/2y1/2 dollars/day

if she offers x sketches of her cat and y sketches of her dog at the beginning
of a day. If she is only able to create 32 total sketches per day, what is the
maximum profit she can make per day? Round your answer to the nearest
cent.

Solution: We want to maximize p(x, y) = x3/2y1/2 subject to g(x, y) =
x+ y = 32. Our derivatives are

px =
3

2
x3/2−1y1/2 =

3

2
x1/2y1/2, py =

1

2
x3/2y1/2−1 =

1

2
x3/2y−1/2, gx = 1, gy = 1.

Our system of equations is

3

2
x1/2y1/2 = λ

1

2
x3/2y−1/2 = λ

x+ y = 32

We see the first and second equations are both equal to λ and so we may
write

3

2
x1/2y1/2 =

1

2
x3/2y−1/2

⇒ 3x1/2y1/2 = x3/2y−1/2

⇒ 3x1/2y1/2 − x3/2y−1/2 = 0

⇒ x1/2y1/2(3− xy−1) = 0

Now, we have three options: x = 0 or y = 0 or 3− xy−1 = 0.

Case 1: x = 0

If x = 0, then y = 32 and so one solution is (0, 32).

Case 2: y = 0

If y = 0, then x = 32 and so another solution is (32, 0).

Case 3: 3− xy−1 = 0

If 3− xy−1 = 0, then 3 = xy−1 ⇒ 3y = x. Since x+ y = 32, we write

32 = x+ y

⇒ 32 = 3y + y

⇒ 32 = 4y

⇒ 8 = y

Thus, x = 3y = 3(8) = 24. Our last solution is (24, 8).
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We check the function values at each solutions:

f(0, 32) = (0)3/2(32)1/2 = 0← Min

f(32, 0) = (32)3/2(0)1/2 = 0← Min

f(24, 8) = (24)3/2(8)1/2 ≈ 332.55 ← Max



Lesson 27: Double Integrals, Volume, Applications

1. Integrating Functions of Several Variables

In this lesson, we address how we integrate functions of several variables. The
motivation is initially very geometric: we want to determine how much volume there
is under the curve (just as we think of integrals as the area under a curve).

Figure 10. The volume under the function over the region R (blue
square) is contained in the black and red box.

Note 66. The regions over which we integrate will always be 2-dimensional.

The volume under f(x, y) over the region R is denoted

(16)

∫∫
R

f(x, y) dA.

The dA simply stands for the area of the region R.

Now, although
∫∫

R
f(x, y) dA represents the volume under f over the region R,

this is not the practical method by which we integrate. Instead, we need to carefully
dissect the way R is described in terms of x and y.

Ex 1. Suppose R is given by
0 ≤ x ≤ 3

−1 ≤ y ≤ 1

287
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Figure 11. 0 ≤ x ≤ 3, −1 ≤ y ≤ 1

Although it doesn’t matter for a rectangle, we interpret the description of R as:
0 ≤ x ≤ 3 ←− Dependent variable

−1 ≤ y ≤ 1 ←− Independent variable

Double integrals are always written with the dependent variable on the inside
and the independent variable on the outside, that is,∫∫

R

f(x, y) dA =

∫ 1

−1

∫ 3

0

f(x, y) dx dy.

We pair the x-bounds on the inside with dx and we pair the y-bounds on the
outside with dy. This is what is meant by pairing: the inside most integral and
inside most differential go together and the outside most integral and outside most
differential go together.

Ex 2. Consider the function f(x, y) = x+ y and the region R bounded by
0 ≤ x ≤ 1 ←− Dependent variable

0 ≤ y ≤ 2 ←− Independent variable

The volume under f(x, y) over R is given by∫∫
R

f(x, y) dA =

∫ 2

0

∫ 1

0

(x+ y) dx dy.

Observe here that the pairing of the integrals with the dx and dy is very impor-
tant. Although the integral

(17)

∫ 1

0

∫ 2

0

(x+ y) dx dy

might look very similar to integral (16) above, they are actually over different regions.
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Now, we address how we actually compute a double integral.


0 ≤ x ≤ 1

0 ≤ y ≤ 2


0 ≤ x ≤ 2

0 ≤ y ≤ 1

Ex 3. Compute

(a)

∫ 2

0

∫ 1

0

x dx dy

We compute a double integral from the “inside” to the “outside”. That
is, we first look at the d· which is closest to the function.

For this integral, because the dx is the most inside, we integrate with
respect to x first and consider all functions of y as a constant (just like we
did with partial derivatives).

∫ 2

0

∫ 1

0

x dx︸ ︷︷ ︸
compute

first

dy =

∫ 2

0

(
1

2
x2

∣∣∣∣x=1

x=0

)
dy

=

∫ 2

0

[
1

2
(1)2 − 1

2
(0)2

]
dy

=

∫ 2

0

1

2
dy

=
1

2
y

∣∣∣∣y=2

y=0

=
1

2
(2)− 1

2
(0) = 1 .

(b)

∫ 2

0

∫ 1

0

x dy dx
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Because the dy is the most inside, we integrate with respect to y first but
this time we hold all functions of x as constants.

∫ 2

0

∫ 1

0

x dy dx =

∫ 2

0

x

∫ 1

0

1 dy︸ ︷︷ ︸
y

dx since x is a constant with respect to y

=

∫ 2

0

xy

∣∣∣∣y=1

y=0

dx

=

∫ 2

0

[x · (1)− x · (0)] dx

=

∫ 2

0

x dx

=
1

2
x2

∣∣∣∣x=2

x=0

=
1

2
(2)2 − 1

2
(0)2

=
1

2
(4) = 2

Note 67. In the third line of this calculation, we replaced only the
y-values leaving the functions of x alone.

This example demonstrates that the pairing is very important. However, if you
keep the pairings consistent, you can swap the order in which you integrate.

∫ 2

0

∫ 1

0

x dx dy =

∫ 1

0

∫ 2

0

x dy dx∫ 1

0

∫ 2

0

x dx dy =

∫ 2

0

∫ 1

0

x dy dx

Examples.

1. Integrate

∫ 1

−1

∫ 1

0

(2x+ 6y) dy dx
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Solution:∫ 1

−1

∫ 1

0

(2x+ 6y) dy dx =

∫ 1

−1

(2xy + 3y2)

∣∣∣∣y=1

y=0

dx

=

∫ 1

−1

[
(2x(1) + 3(1)2)− (2x(0) + 3(0)2)

]
dx

=

∫ 1

−1

(2x+ 3) dx

= x2 + 3x

∣∣∣∣x=1

x=−1

= ((1)2 + 3(1))− ((−1)2 + 3(−1)) = 6

2. Integrate

∫ π/2

0

∫ 1

0

3y2 cosx dy dx

Solution:∫ π/2

0

∫ 1

0

3y2 cosx dy dx =

∫ π/2

0

y3 cosx

∣∣∣∣y=1

y=0

dx

=

∫ π/2

0

[
(1)3 cosx− (0)3 cosx

]
dx

=

∫ π/2

0

cosx dx

= sinx

∣∣∣∣x=π/2

x=0

= sin
(π

2

)
− sin(0) = 1 .

We can integrate over more than rectangles as long as we can describe the region
in an appropriate way.

Ex 4. Integrate the function f(x, y) = 2y over the region D where
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This region is described by
0 ≤ y ≤

√
4− x2 ←− Dependent variable

0 ≤ x ≤ 2 ←− Independent variable

Our integral is then denoted by ∫ 2

0

∫ √4−x2

0

2y dy dx.

Note 68. DO NOT WRITE∫ √4−x2

0

∫ 2

0

2y dx dy.

Here, the dependent variable is on the outside, which is no good. For this home-
work, the outside integral can only have numbers for its bounds.

We compute the integral:∫ 2

0

∫ √4−x2

0

2y dy dx =

∫ 2

0

y2

∣∣∣∣y=
√

4−x2

y=0

dx

=

∫ 2

0

[(√
4− x2

)2

− (0)2

]
dx

=

∫ 2

0

(4− x2) dx

= 4x− 1

3
x3

∣∣∣∣x=2

x=0

=

[
4(2)− 1

3
(2)3

]
−
[
4(0)− 1

3
(0)3

]

= 8− 8

3
=

16

3

When the region of integration is not a square, you can only swap the order of
integration if you can describe the region such that the dependent variable becomes
the independent variable and vice versa. In fact, sometimes you must swap the order
of integration to make the integral possible to compute. This will be addressed in the
next lesson.

Examples.

3. Integrate

∫ e

1

∫ lnx

0

x dy dx
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Solution:∫ e

1

∫ lnx

0

x dy dx =

∫ e

1

xy

∣∣∣∣y=lnx

y=0

dx

=

∫ e

1

[x(lnx)− x(0)] dx

=

∫ e

1

[x lnx] dx

This is now an integration by parts problem.

By LIATE, our table is

u = lnx dv = x dx

du =
1

x
dx v =

1

2
x2

Thus,∫ e

1

x lnx dx =
1

2
x2 lnx

∣∣∣∣x=e

x=1

−
∫ e

1

1

2
x dx

=
1

2
x2 lnx

∣∣∣∣x=e

x=1

− 1

2

(
1

2

)
x2

∣∣∣∣x=e

x=1

=
1

2
x2 lnx− 1

4
x2

∣∣∣∣x=e

x=1

=
1

2
(e)2 ln(e)︸︷︷︸

1

−1

4
(e)2 −

[
1

2
(1)2 ln(1)︸︷︷︸

0

−1

4
(1)2

]

=
1

2
e2 − 1

4
(e2 − 1)

=
1

4
e2 +

1

4

4. Compute

∫ π/2

0

∫ π/2

y

(− sec(y) sin(x)) dx dy Solution:

∫ π/2

0

∫ π/2

y

(− sec(y) sin(x)) dx dy =

∫ π/2

0

(sec(y) cos(x))

∣∣∣∣x=π/2

x=y

dy

=

∫ π/2

0

[
sec(y) cos

(π
2

)
︸ ︷︷ ︸

0

− sec(y) cos(y)

]
dy

=

∫ π/2

0

− 1

cos(y)
cos(y) dy
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=

∫ π/2

0

(−1) dy

= −y
∣∣∣∣y=π/2

y=0

= −π
2

2. Additional Example

Examples.

1. Evaluate

∫ 6

3

∫ y

0

10xy dx dy.

Solution: Write∫ 6

3

∫ y

0

10xy dx dy =

∫ 6

3

5x2y

∣∣∣∣x=y

x=0

dy

=

∫ 6

3

[5(y)2y − 5(0)2y] dy

=

∫ 6

3

5y3 dy

=
5

4
y4

∣∣∣∣y=6

y=3

=
5

4
(6)4 − 5

4
(3)4

=
6075

4

2. Evaluate

∫ 7

4

∫ x

3

5x2

y2
dy dx.

Solution: Write∫ 7

4

∫ x

3

5x2

y2
dy dx =

∫ 7

4

∫ x

3

5x2y−2 dy dx

=

∫ 7

4

− 5x2y−1

∣∣∣∣y=x

y=3

dx

=

∫ 7

4

[
−5x2(x)−1 + 5x2(3)−1

]
dx
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=

∫ 7

4

[
−5x+

5

3
x2

]
dx

= −5

2
x2 +

5

9
x3

∣∣∣∣x=7

x=4

= −5

2
(7)2 +

5

9
(7)3 −

[
−5

2
(4)2 +

5

9
(4)3

]
=

145

2

3. Evaluate

∫ √π/3

0

∫ π/2

x2
5x sin y dy dx.

Solution: Write∫ √π/3

0

∫ π/2

x2
5x sin y dy dx =

∫ √π/3

0

− 5x cos y

∣∣∣∣x=π/2

y=x2
dx

=

∫ √π/3

0

[
−5x cos(x2)−

(
−5x cos

(π
2

))]
dx

=

∫ √π/3

0

5x cos(x2)dx

=
5

2
sin(x2)

∣∣∣∣
√
π/3

0

=
5

2
sin

(√
π

3

)2

− 5

2
sin(0)2

=
5

2
sin
(π

3

)
=

5

2

(√
3

2

)

=
5
√

3

4
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1. Double Integrals

We continue working with double integrals and begin integrating over more regions
than just rectangles and practice swapping the order of integration.

Examples.

1. Suppose R is a rectangle with vertices (0, 1), (0, 2), (2, 1), (2, 2). Find∫∫
R

4x3y dA.

Solution: We sketch a picture of our region

and note that this is described by
1 ≤ y ≤ 2

0 ≤ x ≤ 2

Thus, ∫∫
R

4x3y dA =

∫ 2

0

∫ 2

1

4x3y dy dx

=

∫ 2

0

2x3y2

∣∣∣∣y=2

y=1

dx

=

∫ 2

0

2x3[(2)2 − (1)2] dx

297
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=

∫ 2

0

6x3 dx

=
3

2
x4

∣∣∣∣x=2

x=0

=
3

2

[
(2)4 − (0)4

]
= 24

2. Suppose R is the region bounded by the x-axis, y = 2x, and x = 3. Find∫∫
R

(x+ y) dA.

Solution: Again, we sketch a picture of our region.

Our region is described by
0 ≤ y ≤ 2x

0 ≤ x ≤ 3

Hence, ∫∫
R

(x+ y) dA =

∫ 3

0

∫ 2x

0

(x+ y) dy dx

=

∫ 3

0

[
xy +

1

2
y2

]y=2x

y=0

dx

=

∫ 3

0

[
x(2x) +

1

2
(2x)2

]
dx

=

∫ 3

0

[
2x2 +

1

2
(4x2)

]
dx

=

∫ 3

0

4x2 dx
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=
4

3
x3

∣∣∣∣x=3

x=0

=
4

3
(3)3 − 4

3
(0)3 = 36

3. Find the volume below z = 5 + 10y above the region R bounded by −5 ≤
x ≤ 5 and 0 ≤ y ≤ 25− x2.

Solution: The volume below z = 5+10y above a particular R is exactly∫∫
R

(5 + 10y) dA. The region is described by
0 ≤ y ≤ 25− x2

−5 ≤ x ≤ 5

Hence,∫∫
R

(5 + 10y) dA =

∫ 5

−5

∫ 25−x2

0

(5 + 10y) dy dx

=

∫ 5

−5

(5y + 5y2)

∣∣∣∣y=25−x2

y=0

dx

=

∫ 5

−5

5
[
(25− x2) + (25− x2)2

]
dx

=

∫ 5

−5

5(x4 − 51x2 + 650) dx

= 5

[
1

5
x5 − 51

3
x3 + 650x

]x=5

x=−5

= 5

[
1

5
(5)5 − 51

3
(5)3 + 650(5)−

(
1

5
(−5)5 − 51

3
(−5)3 + 650(−5)

)]
= 17,500

4. Given ∫ 0

−1

∫ x2

0

f(x, y) dy dx,

swap the order of integration.

Solution: The point of this problem is to emphasize that swapping the
order of integration does not depend on the function we are integrating —
only the bounds. Here, we need to sketch graph of the region described by
the bounds and observe that this region can be described in two different
ways.
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0 ≤ y ≤ x2

−1 ≤ x ≤ 0

−1 ≤ x ≤ −√y

0 ≤ y ≤ 1

The problem describes the region as in the first picture. To switch the
order of integration, we use the description in the second picture. Thus,∫ 0

−1

∫ x2

0

f(x, y) dy dx =

∫ 1

0

∫ −√y
−1

f(x, y) dx dy.

5. Evaluate ∫ 1

0

∫ 1

x2
2x
√

1 + y2 dy dx.

Solution: To compute this integral, we will need to switch the order
of integration because we do not have the integration tools to address this
problem as written. As above, we sketch the region:

Changing our bounds so that x is a function of y, we see that our region is
also described by 

0 ≤ x ≤ √
y

0 ≤ y ≤ 1
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Thus,

∫ 1

0

∫ 1

x2
2x
√

1 + y2 dy dx =

∫ 1

0

∫ √y
0

2x
√

1 + y2 dx dy

=

∫ 1

0

x2
√

1 + y2

∣∣∣∣x=
√
y

x=0

dy

=

∫ 1

0

[
(
√
y)2
√

1 + y2 − (0)2
√

1 + y2
]
dy

=

∫ 1

0

y
√

1 + y2 dy

Now, the integral becomes a u-substitution problem.

Let u = 1+y2, then du = 2y dy, u(0) = 1+02 = 1, and u(1) = 1+12 = 2.
So,

∫ 1

0

y
√

1 + y2 dy =
1

2

∫ 2

1

√
u du

=
1

2

(
2

3

)
u3/2

∣∣∣∣2
1

=
1

3
(23/2 − 1) .

6. Let R be the region bounded by the x-axis, y = sinx, x =
π

6
, and x =

π

3
.

Evaluate

∫∫
R

sec2(x) dy dx.

Solution: Since y is a function of x, that needs to be the inside integral
(this also follows by how the problem is presented). Further, we won’t want
to switch the order of integration because that will make our bounds more
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complicated. We have


0 ≤ y ≤ sinx

π

6
≤ x ≤ π

3

We write

∫∫
R

sec2(x) dy dx =

∫ π/3

π/6

∫ sinx

0

sec2(x) dy dx

=

∫ π/3

π/6

y sec2(x)

∣∣∣∣y=sinx

y=0

dx

=

∫ π/3

π/6

(sin(x)) sec2(x)dx

=

∫ π/3

π/6

sin(x)

cos2(x)
dx

This is another u-substitution problem. Let u = cos(x), then du =

− sin(x) dx, u
(π

6

)
=

√
3

2
, and u

(π
3

)
=

1

2
. So,

∫ π/3

π/6

sin(x)

cos2(x)
dx =

∫ 1/2

√
3/2

− 1

u2
du

=
1

u

∣∣∣∣1/2√
3/2

= 2− 2√
3

2. Additional Examples

Examples.

1. Evaluate

∫ 8

0

∫ √y
√
y/3

x
√

64− y2 dx dy.
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Solution: Write

∫ 8

0

∫ √y
√
y/3

x
√

64− y2 dx dy =

∫ 8

0

1

2
x2
√

64− y2

∣∣∣∣x=
√
y

x=
√
y/3

dy

=

∫ 8

0

[
1

2
(
√
y)2
√

64− y2 − 1

2

(√
y

3

)2√
64− y2

]
dy

=

∫ 8

0

[y
2

√
64− y2 − y

18

√
64− y2

]
dy

=

∫ 8

0

4

9
y
√

64− y2 dy

This is now a u-substitution problem. Let u = 64 − y2, then du = −2y dy

which implies dy =
du

−2y
. So we write

∫ 8

0

4

9
y
√

64− y2 dy =

∫ u(8)

u(0)

4

9
y
√
u

(
du

−2y

)
︸ ︷︷ ︸

dy

=

∫ u(8)

u(0)

− 2

9
u1/2 du

= −2

9

(
1

1/2 + 1

)
u1/2+1

∣∣∣∣u(8)

u(0)

= −2

9

(
1

3/2

)
u3/2

∣∣∣∣u(8)

u(0)

= −2

9

(
2

3

)
u3/2

∣∣∣∣u(8)

u(0)

= − 4

27
(64− y2)3/2

∣∣∣∣8
0

= − 4

27
(64− (8)2)3/2 +

4

27
(64− (0)2)3/2

=
4

27
(64)3/2 =

2048

27

2. Evaluate

∫∫
R

1

x2 + 8
dA where R is the region bounded by

y = 9x, x-axis, x = 2.

Solution: We sketch a quick picture of our region:
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Before we describe this region, observe that we need to integrate with
respect to y first because we can’t integrate∫

1

x2 + 8
dx

with our current integration techniques. This means that we need to describe
the region such that y is the dependent variable and x is the independent
variable. We see that our x-values will vary between 0 and 2 and our y-values
can never be larger than the curve y = 9x. So we write

0 ≤ y ≤ 9x

0 ≤ x ≤ 2

Hence, our integral becomes∫∫
R

1

x2 + 8
dA =

∫ 2

0

∫ 9x

0

1

x2 + 8
dy dx

=

∫ 2

0

y

x2 + 8

∣∣∣∣y=9x

y=0

dx

=

∫ 2

0

9x

x2 + 8
dx

Next, we take u = x2 + 8, then du = 2x dx ⇒ dx =
du

2x
. Write∫ 2

0

9x

x2 + 8
dx =

∫ u(2)

u(0)

9x

u

(
du

2x

)
︸ ︷︷ ︸

dx

=

∫ u(2)

u(0)

9

2u
du
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=
9

2
ln |u|

∣∣∣∣u(2)

u(0)

=
9

2
ln |x2 + 8|

∣∣∣∣2
0

=
9

2
(ln((2)2 + 8)− ln((0)2 + 8))

=
9

2
(ln(12)− ln(8))

=
9

2
ln

(
3

2

)

3. Evaluate

∫ 4

0

∫ 16

x2
2x
√

1 + y2 dy dx.

Solution: We cannot integrate in the given order (with our techniques),
so we need to swap the order of integration. The region described is


x2 ≤ y ≤ 16

0 ≤ x ≤ 4

where y is the dependent variable and x is the independent variable. Our
region looks like

Now, we need y to be the independent variable, which means we need to
solve for x. Write

y = x2 ⇒ x =
√
y.
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Next, we observe that y varies between 0 and 16 and that x must always
be less than the curve x =

√
y. Hence, our new description is

0 ≤ x ≤ √
y

0 ≤ y ≤ 16

We write∫ 16

0

∫ √y
0

2x
√

1 + y2 dx dy =

∫ 16

0

x2
√

1 + y2

∣∣∣∣x=
√
y

x=0

dy

=

∫ 16

0

(
√
y)2
√

1 + y2 dy

=

∫ 16

0

y
√

1 + y2 dy

Now, we use u-substitution. Let u = 1 + y2, then du = 2y dy ⇒ dy =

du

2y
. Further,

u(0) = 1 + (0)2 = 1

u(16) = 1 + (16)2 = 257

We write∫ 16

0

y
√

1 + y2 dy =

∫ 257

1

y
√
u

(
du

2y

)
︸ ︷︷ ︸

dy

=

∫ 257

1

1

2
u1/2 du

=
1

2

(
1

1/2 + 1

)
u1/2+1

∣∣∣∣u=257

u=1
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=
1

2

(
1

3/2

)
u3/2

∣∣∣∣257

1

=
1

2

(
2

3

)
u3/2

∣∣∣∣257

1

=
1

3

[
(257)3/2 − (1)3/2

]
=

1

3

[
(257)3/2 − 1

]





Lesson 29: Double Integrals, Volume, Applications (III)

1. Double Integral Examples

We continue working with double integrals and continue to practice swapping the
order of integration. We also address how to find the average of a function over a
rectangle.

Examples.

1. Evaluate ∫ 1

0

∫ 1

y

ex
2

dx dy.

Solution: We must swap the order of integration because ex
2

cannot be
integrated. Our region (y ≤ x ≤ 1, 0 ≤ y ≤ 1) is graphed as

Note that our region can also be described by
0 ≤ y ≤ x

0 ≤ x ≤ 1

Therefore, we may write∫ 1

0

∫ 1

y

ex
2

dx dy =

∫ 1

0

∫ x

0

ex
2

dy dx

=

∫ 1

0

yex
2

∣∣∣∣y=x

y=0

dx

309
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=

∫ 1

0

xex
2

dx

This is a u-substitution problem. Let u = x2, then du = 2x dx, u(0) = 02 = 0,
and u(1) = 12 = 1. So∫ 1

0

xex
2

dx =

∫ 1

0

1

2
eu du =

1

2
eu
∣∣∣∣1
0

=
1

2
(e− 1)

2. Find

∫∫
R

x2 dA where R is the region in the first quadrant bounded by

xy = 4, y = x, y = 0, and x = 3.

Solution: From xy = 4, we get y =
4

x
which we can graph. Here, it is

particularly important to sketch a graph of the function else we will miss an
important observation.

To integrate, we need to describe this region. However, there is more than
one function at play. We address this by splitting this region into two regions
depending on which function is enclosing the area.

Region 1:

0 ≤ y ≤ x

0 ≤ x ≤ 2

Region 2:

0 ≤ y ≤ 4

x

2 ≤ x ≤ 3
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We write∫∫
R

x2 dA =

∫ 2

0

∫ x

0

x2 dy dx︸ ︷︷ ︸
Region 1

+

∫ 3

2

∫ 4/x

0

x2 dy dx︸ ︷︷ ︸
Region 2

=

∫ 2

0

x2y

∣∣∣∣y=x

y=0

dx+

∫ 3

2

x2y

∣∣∣∣y=4/x

y=0

dx

=

∫ 2

0

x3 dx+

∫ 3

2

4x dx

=
1

4
x4

∣∣∣∣x=2

x=0

+ 2x2

∣∣∣∣x=3

x=2

=
1

4
(2)4 +

(
2(2)3 − 2(2)2

)
= 4 + 18− 8 = 14 .

2. Average Value of Functions of Several Variables

The average value of a function f(x, y) over a rectangle R = [a, b]× [c, d] is given
by

Avef =
1

(b− a)(d− c)

∫∫
R

f(x, y) dA =
1

Area of R

∫∫
R

f(x, y) dA.

Examples.

3. Find the average value of f(x, y) =
15 ln 2

4
ey
√
x+ ey over the rectangle

with vertices (2, 0), (3, 0), (2, ln 2), (3, ln 2). Round your answer to 4 decimal
places.

Solution: We can write the rectangle as R = [2, 3]× [0, ln 2]. Hence,

Area of R = (3− 2)(ln 2− 0) = ln 2.

Next, we integrate. Our integral is∫ 3

2

∫ ln 2

0

15 ln 2

4
ey
√
x+ ey dy dx

for which we use u-substitution.

Let u = x + ey, then du = ey dy�, u(0) = x + e0 = x + 1, and u(ln 2) =
x+ eln 2 = x+ 2. So we write∫ 3

2

∫ ln 2

0

15 ln 2

4
ey
√
x+ ey dy dx =

∫ 3

2

∫ x+2

x+1

15 ln 2

4

√
u du dx

� Because we are integrating with respect to y, we treat x as a constant — even when we use
u-substitution.
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=

∫ 3

2

15 ln 2

4

(
2

3
u3/2

∣∣∣∣u=x+2

u=x+1

)
dx

=

∫ 3

2

5 ln 2

2

[
(x+ 2)3/2 − (x+ 1)3/2

]
dx

=
5 ln 2

2

[
2

5
(x+ 2)5/2 − 2

5
(x+ 1)5/2

]x=3

x=2

= ln 2
[
(3 + 2)5/2 − (3 + 1)5/2 −

(
(2 + 2)5/2 − (2 + 1)5/2

)]
= ln 2

[
55/2 − 2(4)5/2 + 35/2

]
Hence, the average value of f(x, y) over the rectangle R is

Avef =
1

ln 2

∫ 3

2

∫ ln 2

0

15 ln 2

4
ey
√
x+ ey dy dx

=
1

ln 2
(ln 2)

[
55/2 − 2(4)5/2 + 35/2

]
= −64 + 9

√
3 + 25

√
5 ≈ 7.4902 .

4. Suppose the function

P (x, t) =
10,000et/2

1 + x

describes the population of a city where x is the number of miles from the
center of the city and t is the number of years after the year 2000. Find the
average population of the city over the first 10 years within a radius of 5
miles from the city center. Round your answer to the nearest integer.

Solution: Here, the rectangle is

R = [0, 5]︸︷︷︸
x

× [0, 10]︸ ︷︷ ︸
t

which means the area of R = (10− 0)(5− 0) = 50. We write∫ 10

0

∫ 5

0

10,000et/2

1 + x
dx dt =

∫ 10

0

10,000et/2 ln(1 + x)

∣∣∣∣x=5

x=0

dt

=

∫ 10

0

(10,000et/2 ln(1 + 5)− 10,000et/2 ln(1)︸︷︷︸
0

) dt

= 10,000

∫ 10

0

ln 6et/2 dt

= 20,000 ln 6et/2
∣∣∣∣t=10

t=0
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= 20,000 ln 6(e5 − e0)

= 20,000 ln 6(e5 − 1).

Therefore, the average value is

1

50
(20,000 ln 6(e5 − 1)) ≈ 105,652 .

In general, for any region R, the average value of f(x, y) over R is given by

Avef =
1

Area of R

∫∫
R

f(x, y) dA.

3. Additional Example

Examples.

1. Find the volume under the surface z = xy above the triangle with vertices
(3, 8, 0), (7, 8, 0), and (3, 12, 0).

Solution: The vertex (x, y, z) = (3, 8, 0) means x = 3, y = 8, z = 0.
In fact, notice that for each vertex, the z-value is 0. This means that these
vertices all live in the xy-plane:

The triangle R is the region marked below:
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We need to find the function that describes the line between the points
(3, 12) and (7, 8). We use the point-slope formula:

y − y0 = m(x− x0).

Here,

m =
12− 8

3− 7
=

4

−4
= −1.

Thus, we see that

y − 12 = −1(x− 3) = −x+ 3

implies that y = −x+ 15.

We want to describe our region R in terms of x and y. We see that the
x-values vary between 3 and 7 and that the y-values are between 8 and the
line y = −x+ 15. Therefore, we describe our region R via

8 ≤ y ≤ −x+ 15

3 ≤ x ≤ 7

Finally, we integrate:∫∫
R

(xy) dA =

∫ 7

3

∫ −x+15

8

xy dy dx

=

∫ 7

3

1

2
xy2

∣∣∣∣y=−x+15

y=8

dx

=

∫ 7

3

1

2

[
x(−x+ 15)2 − x(8)2

]
dx

=

∫ 7

3

1

2

[
x(x2 − 30x+ 225)− 64x

]
dx

=

∫ 7

3

1

2

[
x3 − 30x2 + 225x− 64x

]
dx

=

∫ 7

3

1

2

[
x3 − 30x2 + 161x

]
dx

=
1

2

[
1

4
x4 − 30

3
x3 +

161

2
x2

]x=7

x=3

=
1

2

[
1

4
x4 − 10x3 +

161

2
x2

]x=7

x=3
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=
1

2

[
1

4
(7)4 − 10(7)3 +

161

2
(7)2 −

(
1

4
(3)4 − 10(3)3 +

161

2
(3)2

)]
=

1

2
(640)

= 320

2. Evaluate

∫ 49

0

∫ 7

√
y

5
√
x3 + 1 dx dy.

Solution: We cannot integrate as the integral is written which means
we need to swap the order of integration. Our region is given as

√
y ≤ x ≤ 7

0 ≤ y ≤ 49

where the dependent variable is x and the independent variable is y. We need
to rewrite this where y is the dependent variable and x is the independent
variable. To do this, we sketch a quick picture:

From this, it should be clear that 0 ≤ x ≤ 7. As for y, we observe that if
x =
√
y, then y = x2. Our picture becomes
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The black line means that for each x value between 0 and 7, the y value
cannot be any larger than the curve y = x2. But this means that

0 ≤ y ≤ x2

0 ≤ x ≤ 7

Now, we can write∫ 49

0

∫ 7

√
y

5
√
x3 + 1 dxdy =

∫ 7

0

∫ x2

0

5
√
x3 + 1 dy dx

=

∫ 7

0

5y
√
x3 + 1

∣∣∣∣y=x2

y=0

dx

=

∫ 7

0

5(x2)
√
x3 + 1 dx

This is a u-substitution problem. Take u = x3 +1, then du = 3x2 dx⇒ dx =

du

3x2
. Write

∫ 7

0

5x2
√
x3 + 1 dx =

∫ u(7)

u(0)

5x2
√
u
du

3x2︸︷︷︸
dx

=

∫ u(7)

u(0)

5

3

√
u du

=

∫ u(7)

u(0)

5

3
u1/2 du

=

(
5

3

)(
1

1/2 + 1

)
u1/2+1

∣∣∣∣u(7)

u(0)

=
5

3

(
1

3/2

)
u3/2

∣∣∣∣u(7)

u(0)

=
5

3

(
2

3

)
u3/2

∣∣∣∣u(7)

u(0)

=
10

9
(x3 + 1)3/2

∣∣∣∣7
0

=
10

9

[
((7)3 + 1)3/2 − ((0) + 1)3/2

]
=

10

9

[
(344)3/2 − 1

]
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3. A large building with a rectangular base has a curved roof whose height is

h(x, y) = 82− 0.05x2 + 0.026y2.

The rectangular base extends from −50 ≤ x ≤ 50 feet and −100 ≤ y ≤ 100
feet. Find the average height of the building, round your answers to the
nearest 3 decimal places.

Solution: The area of the rectangle over which we are integrating is

[50− (−50)][100− (−100)] = [100][200] = 20,000.

Thus, the average height of the building is

1

20,000

∫ 50

−50

∫ 100

−100

(82− 0.05x2 + 0.026y2) dy dx

=
1

20,000

∫ 50

−50

[
82y − 0.05x2y +

0.026

3
y3

]y=100

y=−100

dx

=
1

20,000

∫ 50

−50

[
82(100)− 0.05x2(100) +

0.026

3
(100)3

−
(

82(−100)− 0.05x2(−100) +
0.026

3
(−100)3

)]
dx

=
1

20,000

∫ 50

−50

[
82(100)− 5x2 +

26,000

3
−
(
−82(100) + 5x2 − 26,000

3

)]
dx

=
1

20,000

∫ 50

−50

[
16,400 +

52,000

3
− 10x2

]
dx

=
1

20,000

[
16,400x+

52,000

3
x− 10

3
x3

]x=50

x=−50

=
1

20,000

[
16,400(50) +

52,000

3
(50)− 10

3
(50)3 −

(
16,400(−50) +

52,000

3
(−50)− 10

3
(−50)3

)]
=

1

20,000

[
820,000 +

2,600,000

3
− 1,250,000

3
−
(
−820,000− 2,600,000

3
+

1,250,000

3

)]
=

1

20,000

[
1,640,000 +

2,700,000

3

]
= 127 feet





Lesson 30: Systems of Equations, Matrices, Gaussian
Elimination

1. Solutions to In-Class Examples

A system of equations is just a list of equations. The goal is to find the inputs
which make the list true: we call these inputs solutions.

Types of Solutions

Inconsistent
There are no solutions

Ex

{
x+ y = 1

x+ y = −1

No (x, y) work

Consistent Independent
There is 1 solution

Ex

{
x+ y = 2

−x+ y = 0

(x, y) = (1, 1)

Consistent Dependent
There are many solutions

Ex

{
x+ y = 1

2x+ 2y = 2

(x, y) = (1− t, t) for any t

The following 3 operations on a system of equations will not change the set of
solutions:

(1) switching the order of the equations

(2) multiplying an equation by a non-zero constant

(3) adding a multiple of one equation to another equation

The method of solving a system of equations by algebraic manipulation is called
the elimination method.

We can write a system of equations as an augmented matrix.

A matrix looks like

[
1 0

3 12

]
and an augmented matrix looks like

[
6 −1 3

2 0 −7

]
Ex 1.

x y const[
1

3

0

12

7

9

]
l

1x + 0y = 7

3x + 12y = 9

x y z const[
6

2

−1

0

3

−7

0

6

]
l

6x + (−1)y + 3z = 0

2x + (0)y + (−7)z = 6

319
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We can do similar operations to matrices as we can to systems of equations. We
call them row operations. We may

(1) switch two rows (R1 ↔ R2)

(2) multiply a row by a non-zero constant (2R1 → R1)

(3) add a multiple of one row to another row (3R1 +R2 → R2)

We can also solve systems of equations when they are in matrix form. To solve
these systems of equations using matrices, we put matrices into row-echelon form:

Consistent Independent Consistent Dependent Inconsistent[
1 # #

0 1 #

] [
1 # #

0 0 0

] [
1 # #

0 0 �

]
 1 # # #

0 1 # #

0 0 1 #


 1 # # #

0 1 # #

0 0 0 0


 1 # # #

0 1 # #

0 0 0 �


where # is any number and � is any non-zero number.

Solving a system of equations by putting a matrix in row-echelon form is called
Gaussian elimination.

Examples.

1. Solve the following system of equations using matrices:{
3x + 2y = 7

6x + 3y = 12

Translate

−−→

[
3 2 7

6 3 12

]
−2R1+R2→R2

−−→

[
3 2 7

0 −1 −2

]

−R2→R2

−−→

[
3 2 7

0 1 2

]
1
3
R1→R1

−−→

[
1 2

3
7
3

0 1 2

]

Translate

−−→

{
x + 2

3
y = 7

3

y = 2

Since y = 2, we can substitute into the first equation to get

x+
2

3
(2) =

7

3
⇒ x =

7

3
− 4

3
=

3

3
= 1.

Solution: (x, y) = (1, 2)
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2. Solve {
2x + 6y = 10

3x + 5y = 11

Translate

−−→

[
2 6 10

3 5 11

]
1
2
R1→R1

−−→

[
1 3 5

3 5 11

]

−3R1+R2→R2

−−→

[
1 3 5

0 −4 −4

]
− 1

4
R2→R2

−−→

[
1 3 5

0 1 1

]

Translate

−−→

{
x + 3y = 5

y = 1

Substituting y = 1 into the first equation, we get

x+ 3(1) = 5 ⇒ x = 5− 3 = 2.

Solution: (x, y) = (2, 1)

3. Put the following matrix into row-echelon form: 1 −2 3 9

0 1 0 5

2 5 5 29



−2R2+R3→R3

−−→

 1 −2 3 9

0 1 0 5

0 9 −1 11

 −9R2+R3→R3

−−→

 1 −2 3 9

0 1 0 5

0 0 −1 −34


−R3→R3

−−→

 1 −2 3 9

0 1 0 5

0 0 1 34


4. A goldsmith has two alloys of gold with the first having a purity of 90% and

the second having a purity of 70%. If x grams of the first are mixed with y
grams of the second such that we get 100 grams of an alloy containing 80%
gold, find x to the nearest gram.

Solution: This question comes down to correctly setting up the system
of equations which describes this situation. We want, in total, 100 grams of
the alloy. Hence, x + y = 100. Out of these 100 grams, we want 80% to be
gold. But each gram of the first alloy only contributes .9 grams of gold and
each gram of the second alloy only contributes .7 grams of gold. Therefore,
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the second equation in our system is .9x+ .7y = 80. Our system is then{
x+ y = 100

.9x+ .7y = 80

Instead of matrices, we use the elimination method. The first equation
tells us that x = 100− y so by the second equation

.9(100− y) + .7y = 80

⇒ 90− .9y + .7y = 80

⇒ 90− .2y = 80

⇒ −.2y = −10

⇒ y = 50

Thus, since x = 100− y, if y = 50 we know that x = 50 .

5. Solve and classify the following system of equations:
3x + 2y + z = 1

x + y + 2z = 0

4x + 3y + 3z = 1

Translate

−−→

 3 2 1 1

1 1 2 0

4 3 3 1

 R1↔R2

−−→

 1 1 2 0

3 2 1 1

4 3 3 1


−3R1+R2→R2

−−→

 1 1 2 0

0 −1 −5 1

4 3 3 1

 −4R1+R3→R3

−−→

 1 1 2 0

0 −1 −5 1

0 −1 −5 1


−R2+R3→R3

−−→

 1 1 2 0

0 −1 −5 1

0 0 0 0

 −R2→R2

−−→

 1 1 2 0

0 1 5 −1

0 0 0 0


If we translate this back into a system of equations, we get

x + y + 2z = 0

y + 5z = −1

0x + 0y + 0z = 0

We see that any (x, y, z) will satisfy the last equation. This is an example
of a consistent dependent system, which means we have infinitely many
solutions. In this situation, take z = t (here, t is called the free parameter).
The first two equations become{

x + y + 2t = 0

y + 5t = −1
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The second equation implies that y = −1− 5t. Substituting this into the
first equation, we get

x+ (−1− 5t) + 2t = 0

⇒ x− 1− 3t = 0

⇒ x = 1 + 3t

Solution: x = 1 + 3t, y = −1− 5t, z = t

2. Additional Examples

Examples.

1. Four sandwiches and two bags of chips contain 848 calories. One sandwich
and one bag of chips contain 305 calories. How many calories are there in a
sandwich? Solve using Gaussian elimination.

Solution: Let x be the number of calories in one sandwich and let y
be the number calories in one bag of chips. Our goal is to find x. The
information above can be translated into the following system of equations:{

x+ y = 305

4x+ 2y = 848

Translating this into a matrix, we put it in row-echelon form:[
1 1 305

4 2 848

]
−4R1+R2→R2

−−→

[
1 1 305

0 −2 −372

]
− 1

2
R2→R2

−−→

[
1 1 305

0 1 186

]

Translating this back into a system of equations, we have{
x+ y = 305

y = 186

By the first equation x = 305− y, which means that

x = 305− 186 = 119 calories

2. Solve the following problem using Gaussian elimination: An object is moving
vertically where a is the constant acceleration, and for t = 0 that v is the
initial velocity and h is the initial height. Given that at t = 1 second, s = 47
feet; at t = 2 seconds, s = 85 feet; and at t = 3 seconds, s = 47 feet. Find a

function for the height, s, that is modeled using s(t) =
1

2
at2 + vt+ h.

Solution: We are given the function s(t) =
1

2
at2 +vt+h where we want

to solve for a, v, h. We also know the s(t) values for t = 1, 2, 3. So we have
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the system of equations
1
2
(1)2a + (1)v + h = 47 where t = 1

1
2
(2)2a + (2)v + h = 85 where t = 2

1
2
(3)2a + (3)v + h = 47 where t = 3

In a matrix, this becomes

a v h s(t)
1
2
(1)2

1
2
(2)2

1
2
(3)2

1

2

3

1

1

1

47

85

47

 =


1
2

1 1 47

2 2 1 85

9
2

3 1 47


We put this matrix into row-echelon form.

2R1→R1
2R3→R3

−−→

 1 2 2 94

2 2 1 85

9 6 2 94

 −2R1+R2→R2

−−→

 1 2 2 94

0 −2 −3 −103

9 6 2 94


−9R1+R3→R3

−−→

 1 2 2 94

0 −2 −3 −103

0 −12 −16 −752

 −6R2+R3→R3

−−→

 1 2 2 94

0 −2 −3 −103

0 0 2 −134



1
2
R3→R3

−−→

 1 2 2 94

0 −2 −3 −103

0 0 1 −67

 − 1
2
R2→R2

−−→


1 2 2 94

0 1 3
2

103
2

0 0 1 −67


Translating back to a system of equations, we have

a + 2v + 2h = 94

v + 3
2
h = 103

2

h = −67

Since h = −67, substituting into the second equation gives us

v +
3

2
(−67) =

103

2
⇒ v =

103

2
+

201

2
=

304

2
= 152.

Hence, by the first equation,

a+ 2(152) + 2(−67) = 94 ⇒ a = 94− 304 + 134 = −76.
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Therefore, our function s(t) is given by

s(t) =
1

2
(−76)t2 + 152t− 67 = −38t2 + 152t− 67 .





Lesson 31: Gauss-Jordan Elimination

1. Solutions to In-Class Examples

A matrix is in reduced row-echelon form if it looks like one of the following:

Consistent Independent Consistent Dependent Inconsistent[
1 0 #

0 1 #

] [
1 0 #

0 0 0

] [
1 0 #

0 0 �

]
 1 0 0 #

0 1 0 #

0 0 1 #


 1 0 0 #

0 1 0 #

0 0 0 0


 1 0 0 #

0 1 0 #

0 0 0 �


where # is any number and � is any non-zero number. The method of solving a
system of equations by putting its augmented matrix into reduced row-echelon form
is called Gauss-Jordan elimination.

Examples.

1. Use Gauss-Jordan elimination to solve

{
2x+ 3y = −5

−x+ 2y = −8

Translate

−−→

[
2 3 −5

−1 2 −8

]
R1↔R2

−−→

[
−1 2 −8

2 3 −5

]
−R1→R1

−−→

[
1 −2 8

2 3 −5

]

−2R1+R2→R2

−−→

[
1 −2 8

0 7 −21

]
1
7
R2→R2

−−→

[
1 −2 8

0 1 −3

]
2R2+R1→R1

−−→

[
1 0 2

0 1 −3

]
Solution: (x, y) = (2,−3)

2. Put the following matrix into reduced row-echelon form:

 −2 3 3 −4

1 −1 2 5

−1 2 −1 −5



R1↔R2

−−→

 1 −1 2 5

−2 3 3 −4

−1 2 −1 −5

 2R1+R2→R2

−−→

 1 −1 2 5

0 1 7 6

−1 2 −1 −5


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R1+R3→R3

−−→

 1 −1 2 5

0 1 7 6

0 1 1 0

 −R2+R3→R3

−−→

 1 −1 2 5

0 1 7 6

0 0 −6 −6


− 1

6
R3→R3

−−→

 1 −1 2 5

0 1 7 6

0 0 1 1

 −7R3+R2→R2

−−→

 1 −1 2 5

0 1 0 −1

0 0 1 1


−2R3+R1→R1

−−→

 1 −1 0 3

0 1 0 −1

0 0 1 1

 R2+R1→R1

−−→

 1 0 0 2

0 1 0 −1

0 0 1 1


3. Solve the following using Gauss-Jordan elimination:

3x − 2y − 6z = 1

x + 2y + z = 0

−x + 2y − z = 4

Translate

−−→

 3 −2 −6 1

1 2 1 0

−1 2 −1 4

 R1↔R2

−−→

 1 2 1 0

3 −2 −6 1

−1 2 −1 4


−3R1+R2→R2

−−→

 1 2 1 0

0 −8 −9 1

−1 2 −1 4

 R1+R3→R3

−−→

 1 2 1 0

0 −8 −9 1

0 4 0 4


R2↔R3

−−→

 1 2 1 0

0 4 0 4

0 −8 −9 1

 1
4
R2→R2

−−→

 1 2 1 0

0 1 0 1

0 −8 −9 1


8R2+R3→R3

−−→

 1 2 1 0

0 1 0 1

0 0 −9 9

 − 1
9
R3→R3

−−→

 1 2 1 0

0 1 0 1

0 0 1 −1


−R3+R1→R1

−−→

 1 2 0 1

0 1 0 1

0 0 1 −1

 −2R2+R1→R1

−−→

 1 0 0 −1

0 1 0 1

0 0 1 −1


Solution: (x, y, z) = (−1, 1,−1)



1. SOLUTIONS TO IN-CLASS EXAMPLES 329

4. Use Gauss-Jordan elimination to solve the system of equations:
x + y + z = 14

5x + 2y + 5z = 52

y − 2z = 2

Translate

−−→

 1 1 1 14

5 2 5 52

0 1 −2 2

 −5R1+R2→R2

−−→

 1 1 1 14

0 −3 0 −18

0 1 −2 2


−R2

3
→R2

−−→

 1 1 1 14

0 1 0 6

0 1 −2 2

 −R2+R3→R3

−−→

 1 1 1 14

0 1 0 6

0 0 −2 −4


− 1

2
R3→R3

−−→

 1 1 1 14

0 1 0 6

0 0 1 2

 −R3+R1→R1

−−→

 1 1 0 12

0 1 0 6

0 0 1 2


−R2+R1→R1

−−→

 1 0 0 6

0 1 0 6

0 0 1 2


Solution: (x, y, z) = (6, 6, 2)





Lesson 32: Matrix Operations

1. Solutions to In-Class Examples

The dimensions of a matrix are always given by row×column.

Ex 1.[
1 0 −1

0 7 2

]
2× 3 matrix

 −2

0

1


3× 1 matrix

[
1 1

−1 1

]
2× 2 matrix

Elements in a matrix are specified by the ordered pair (row, column).

Ex 2. 6 is the (2, 3)-entry of the matrix

[
1 2 3

4 5 6

]

Matrix Addition : We add two matrices component-wise, that is, by adding
each entry that has the same (row, column). We can only add matrices that have the
same dimensions.

Ex 3.[
2 1

−1 3

]
+

[
3 −1

0 −5

]
=

[
2 + (3) 1 + (−1)

−1 + (0) 3 + (−5)

]
=

[
5 0

−1 −2

]

 −1 3 2

0 1 −1

1 2 5

+

 1 1 −5

2 3 4

−1 −2 −1

 =

 −1 + 1 3 + 1 2 + (−5)

0 + 2 1 + 3 −1 + 4

1 + (−1) 2 + (−2) 5 + (−1)

 =

 0 4 −3

2 4 3

0 0 4


Scalar Multiplication : A scalar is a number that isn’t in a matrix. We use

the term scalar to differentiate it from the entries of a matrix. We can multiply
matrices by scalars, which amounts to multiplying each entry in the matrix by the
scalar.

Ex 4.

3

[
1 2

−1 3

]
=

[
3(1) 3(2)

3(−1) 3(3)

]
=

[
3 6

−3 9

]
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2

 2 1 −1

−1 3 0

0 7 5

 =

 2(2) 2(1) 2(−1)

2(−1) 2(3) 2(0)

2(0) 2(7) 2(5)

 =

 4 2 −2

−2 6 0

0 14 10


Matrix Multiplication : We can multiply matrices together. This is not done

component-wise. There is an excellent reason why we do matrix multiplication this
way but the reason is beyond the scope of this class.

Ex 5. If

A =

[
1 0 0

2 1 3

]
and B =

 3

−1

2

 ,
find AB.

[
1 0 0

2 1 3

] 3

−1

2

 =

[
1(3) + 0(−1) + 0(2)

2(3) + 1(−1) + 3(2)

]
=

[
3

11

]

Notice that in terms of the dimensions of the matrix, we have (2×3)(3×1) = 2×1.
This is true in general. In a similar way, (5× 2)(2× 3) = 5× 3.

Sometimes matrix multiplication doesn’t make sense. For example, BA doesn’t
make sense because the number of columns on the left has to equal the number of
rows on the right.

Examples.

1. Let A =

[
2 1

−1 0

]
and B =

[
3 0

4 −1

]
. Find 3A, 3A−B, AB, and BA.

3A = 3

[
2 1

−1 0

]
=

[
3(2) 3(1)

3(−1) 3(0)

]
=

[
6 3

−3 0

]

3A−B = 3

[
2 1

−1 0

]
−

[
3 0

4 −1

]
=

[
6 3

−3 0

]
−

[
3 0

4 −1

]

=

[
6− 3 3− 0

−3− 4 0− (−1)

]
=

[
3 3

−7 1

]

AB =

[
2 1

−1 0

][
3 0

4 −1

]
=

[
2(3) + 1(4) 2(0) + 1(−1)

−1(3) + 0(4) −1(0) + 0(−1)

]
=

[
10 −1

−3 0

]



1. SOLUTIONS TO IN-CLASS EXAMPLES 333

BA =

[
3 0

4 −1

][
2 1

−1 0

]
=

[
3(2) + 0(−1) 3(1) + 0(0)

4(2) + (−1)(−1) 4(1) + (−1)(0)

]
=

[
6 3

9 4

]

In general, AB 6= BA. So order matters for matrix multiplication.

2. If A =

 1 0 1

1 2 −1

−1 −1 3

, find A2. What is the (3, 2)-entry of A2?

A2 = A · A =

 1 0 1

1 2 −1

−1 −1 3


 1 0 1

1 2 −1

−1 −1 3



=


1(1) + 0(1) + 1(−1) 1(0) + 0(2) + 1(−1) 1(1) + 0(−1) + 1(3)

1(1) + 2(1) + (−1)(−1) 1(0) + 2(2) + (−1)(−1) 1(1) + 2(−1) + (−1)(3)

−1(1) + (−1)(1) + 3(−1) −1(0) + (−1)(2) + 3(−1) −1(1) + (−1)(−1) + 3(3)



=

 0 −1 4

4 5 −4

−5 −5 9


The (3, 2)-entry is −5 .

3. If A =

[
1 −1 2

0 3 −2

]
and B =

 1 1

−1 0

2 3

, find AB.

AB =

[
1 −1 2

0 3 −2

] 1 1

−1 0

2 3

 =

 1(1) + (−1)(−1) + 2(2) 1(1) + (−1)(0) + 2(3)

0(1) + 3(−1) + (−2)(2) 0(1) + 3(0) + (−2)(3)



=

[
6 7

−7 −6

]

4. Let M =

[
1 −1

1 0

]
. Find M2 − 3M .
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M2 − 3M =

[
1 −1

1 0

][
1 −1

1 0

]
− 3

[
1 −1

1 0

]

=

 1(1) + (−1)(1) 1(−1) + (−1)(0)

1(1) + 1(0) 1(−1) + 0(0)

− [ 3(1) 3(−1)

3(1) 3(0)

]

=

[
0 −1

1 −1

]
−

[
3 −3

3 0

]

=

[
−3 2

−2 −1

]

2. Additional Examples

Examples.

1. Given the number of calories expended by people with different weights and
using different exercises for 20 minute time periods is

A =

120lb 150lb 114 124

116 158

78 74

 Bicycling

Jogging

Walking

A 120-pound person and a 150-pound person both bicycle for 40 minutes,
jog for 10 minutes, and walk for 60 minutes. Create a matrix for the time
spent exercising, then multiply the matrices to find the number of calories
expended by the 120-pound and the 150-pound person. Round your answers
to 2 decimal places.

Solution: Since we are measuring time in 20 minute periods, the matrix
describing the time spent exercising per exercise is

bicycle jog walk

[2 .5 3]

Then we see that

[
2 .5 3

] 114 124

116 158

78 74

 =

[
114(2) + 116(.5) + 78(3)

124(2) + 158(.5) + 74(3)

]
120lb

150lb

=

[
520

549

]
120lb

150lb
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Thus, we see that the 120 pound person expends 520 calories and the
150 pound person expends 549 calories .





Lesson 33: Inverses and Determinants of Matrices (I)

1. Solutions to In-Class Examples

Definition 69. The square matrix with 1s along the diagonal and 0s elsewhere
is called the identity matrix.

Ex 1.

I2 =

[
1 0

0 1

]
2× 2 identity matrix

I3 =

 1 0 0

0 1 0

0 0 1


3× 3 identity matrix

If In is the n× n identity matrix, then for any n× n matrix A,

AIn = A = InA.

For some square matrices A, there exists a inverse matrix A−1, i.e.,

AA−1 = In = A−1A.

Method for Finding Matrix Inverses

Let A be an n× n matrix. Create a new matrix

B =
[
A In

]
.

Use row-operations to put B into reduced-row echelon form. If A has an
inverse, A−1, then the resulting matrix, B′, will be of the form

B′ =
[
In A−1

]
.

Ex 2. Let A =

[
2 1

−1 0

]
. Find A−1.

[
2 1 1 0

−1 0 0 1

]
R1↔R2

−−→

[
−1 0 0 1

2 1 1 0

]
−R1→R1

−−→

[
1 0 0 −1

2 1 1 0

]

−2R1+R2→R2

−−→

[
1 0 0 −1

0 1 1 2

]
337



338 LESSON 33: INVERSES AND DETERMINANTS OF MATRICES (I)

Thus,

A−1 =

[
0 −1

1 2

]
.

Quick Check: Show that

AA−1 =

[
2 1

−1 0

][
0 −1

1 2

]
=

[
1 0

0 1

]
and A−1A =

[
0 −1

1 2

][
2 1

−1 0

]
=

[
1 0

0 1

]
.

Examples.

1. Given A =

 1 1 −1

0 1 3

−1 0 −1

, find A−1 if it exists.

Solution: From our method above, our matrixB is

 1 1 −1 1 0 0

0 1 3 0 1 0

−1 0 −1 0 0 1

.

We put this in reduced row-echelon form.

R1+R3→R3

−−→

 1 1 −1 1 0 0

0 1 3 0 1 0

0 1 −2 1 0 1

 −R2+R3→R3

−−→

 1 1 −1 1 0 0

0 1 3 0 1 0

0 0 −5 1 −1 1



− 1
5
R3→R3

−−→


1 1 −1 1 0 0

0 1 3 0 1 0

0 0 1 −1
5

1
5
−1

5

 −3R3+R2→R2

−−→


1 1 −1 1 0 0

0 1 0 3
5

2
5

3
5

0 0 1 −1
5

1
5
−1

5



R3+R1→R1

−−→


1 1 0 4

5
1
5
−1

5

0 1 0 3
5

2
5

3
5

0 0 1 −1
5

1
5
−1

5

 −R2+R1→R1

−−→


1 0 0 1

5
−1

5
−4

5

0 1 0 3
5

2
5

3
5

0 0 1 −1
5

1
5
−1

5


So

A−1 =


1
5
−1

5
−4

5

3
5

2
5

3
5

−1
5

1
5
−1

5

.
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Finding Solutions using Inverse Matrices

A column vector is a matrix of the form[
1

0

]
or

 −1

8

2

 .
Let AX = Y be a system of equations where A is the n×n coefficient matrix
and X and Y are column vectors, then

X = A−1Y.

Examples.

2. Find the solution of

{
2x+ 3y = −5

−x+ 2y = −8
using inverse matrices.

Solution: Here A =

[
2 3

−1 2

]
, X =

[
x

y

]
, Y =

[
−5

−8

]
. By the

method described above, X = A−1Y . So we compute A−1.

[
2 3 1 0

−1 2 0 1

]
R1↔R2

−−→

[
−1 2 0 1

2 3 1 0

]
−R1→R1

−−→

[
1 −2 0 −1

2 3 1 0

]

−2R1+R2→R2

−−→

[
1 −2 0 −1

0 7 1 2

]
1
7
R2→R2

−−→

 1 −2 0 −1

0 1 1
7

2
7


2R2+R1→R1

−−→

 1 0 2
7
−3

7

0 1 1
7

2
7



So, A−1 =

 2
7
−3

7

1
7

2
7

. Then, since X = A−1Y ,

[
x

y

]
=

 2
7
−3

7

1
7

2
7

[ −5

−8

]
=

 2
7
(−5) +

(
−3

7

)
(−8)

1
7
(−5) +

(
2
7

)
(−8)

 =

 14
7

−21
7

 =

[
2

−3

]

Solution: (x, y) = (2,−3)
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3. Find a solution to


−x+ 5y + 2z = 39

3y + 5z = 39

2x+ y + 2z = 28

given that the inverse of the

coefficient matrix is

1

37

 1 −8 19

10 −6 5

−6 11 −3

 .
Solution: Here,

A =

 −1 5 2

0 3 5

2 1 2

 , X =

 x

y

z

 , Y =

 39

39

28


We are also told that

A−1 =
1

37

 1 −8 19

10 −6 5

−6 11 −3


By our method we know that X = A−1Y , so we can write x

y

z

 =
1

37

 1 −8 19

10 −6 5

−6 11 −3


 39

39

28

 =
1

37

 1(39) + (−8)(39) + 19(28)

10(39) + (−6)(39) + 5(28)

−6(39) + 11(39) + (−3)(28)



=
1

37

 259

296

111

 =

 7

8

3


Solution: (x, y, z) = (7, 8, 3)
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1. Solutions to In-Class Examples

The determinant of a matrix A (detA or |A|) is a function on square matrices
that returns a number, not a matrix.

Fact 70.

• If detA 6= 0, then A−1 exists.

• If A−1 exists, then detA 6= 0.

Definition 71. A matrix is called singular if detA = 0. A matrix is called
non-singular if detA 6= 0.

Determinant of 2× 2 Matrices:

Important 2× 2 Formulas

Let A =

[
a b

c d

]
, then

(i) detA =

∣∣∣∣∣ a b

c d

∣∣∣∣∣ = ad− bc

(ii) A−1 =
1

detA

[
d −b
−c a

]
if detA 6= 0

Ex 1. Let A =

[
2 0

−1 1

]
. Find detA and, if it exists, find A−1.

We write

detA = |A| =

∣∣∣∣∣ 2 0

−1 1

∣∣∣∣∣ = (2)(1)− (0)(−1) = 2.

Because detA 6= 0, we know that A−1 exists. Thus, by (ii),

A−1 =
1

detA

[
d −b
−c a

]
=

1

2

[
1 0

1 2

]
.

Determinant of 3× 3 Matrices: The determinant of 3× 3 matrices is defined
using 2× 2 matrices. We compute the minors and cofactors of the matrix. Let

341
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A =

 0 2 1

2 −2 −2

1 0 1

 .
The minor of the (3, 2)-entry, M32, is the determinant of the matrix A after

deleting the 3rd row and 2nd column, that is, 0 2 1

2 −2 −2

1 0 1


(3, 2)-entry

−→

 0 2 1

2 −2 −2

1 0 1


3rd Row,

2nd Column

−→

∣∣∣∣∣ 0 1

2 −2

∣∣∣∣∣
M32

= (0)(−2)−(1)(2) = −2 = M32

The cofactor of the (3, 2)-entry, C32, is (−1)3+2M23 = (−1)5(−2) = 2 = C32

Ex 2. Consider the matrix A =

 1 2 −2

0 1 0

−1 3 2

.

Minors and Cofactors of A for Row 2

(2, 1)-entry 1 2 −2

0 1 0

−1 3 2


M21 =

∣∣∣∣∣ 2 −2

3 2

∣∣∣∣∣
= 4− (−6) = 10

C21 = (−1)2+1M21

= −10

(2, 2)-entry 1 2 −2

0 1 0

−1 3 2


M22 =

∣∣∣∣∣ 1 −2

−1 2

∣∣∣∣∣
= 2− (2) = 0

C22 = (−1)2+2M22

= 0

(2, 3)-entry 1 2 −2

0 1 0

−1 3 2


M23 =

∣∣∣∣∣ 1 2

−1 3

∣∣∣∣∣
= 3− (−2) = 5

C23 = (−1)2+3M23

= −5

detA = [(2,1)-entry]C21+[(2,2)-entry]C22+[(2,3)-entry]C23 = 0(−10)+1(0)+0(−5) = 0

Determinant of a 3× 3 Matrix:

If A is a 3× 3 matrix,then for any row r,

detA = [(r, 1)-entry]Cr1 + [(r, 2)-entry]Cr2 + [(r, 3)-entry]Cr3.

Examples.

1. Is A =

[
2 1

0 −1

]
singular?

Solution: A matrix is singular if detA = 0. So, we write

detA =

∣∣∣∣∣ 2 1

0 −1

∣∣∣∣∣ = (2)(−1)− (1)(0) = −2 6= 0.
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Therefore, A is non-singular.

2. Find the minor and cofactor of the (1, 3)-entry of A =

 1 −1 1

0 2 1

3 −1 0

.

 1 −1 1

0 2 1

3 −1 0

 −→M13 =

∣∣∣∣∣ 0 2

3 −1

∣∣∣∣∣ = 0(−1)− 2(3) = −6

C13 = (−1)1+3M13 = −6

3. Find the determinant of A from # 2.

Solution: We expand along row 1.

(1, 1)-entry 1 −1 1

0 2 1

3 −1 0


M11 =

∣∣∣∣∣ 2 1

−1 0

∣∣∣∣∣
= 0− (−1) = 1

C11 = (−1)1+1M11

= 1

(1, 2)-entry 1 −1 1

0 2 1

3 −1 0


M12 =

∣∣∣∣∣ 0 1

3 0

∣∣∣∣∣
= 0− 3 = −3

C12 = (−1)1+2M12

= 3

(1, 3)-entry 1 −1 1

0 2 1

3 −1 0


M13 =

∣∣∣∣∣ 0 2

3 −1

∣∣∣∣∣
= 0− 6− 6

C13 = (−1)1+3M13

= −6

Thus,

detA = 1(1) + (−1)(3) + 1(−6) = 1− 3− 6 = −8 .

4. Given

∣∣∣∣∣ x− 3 3

0 x+ 1

∣∣∣∣∣ = 0, find x.

Solution: Write∣∣∣∣∣ x− 3 3

0 x+ 1

∣∣∣∣∣ = (x− 3)(x+ 1)− 0(3) = (x− 3)(x+ 1).

Hence, (x− 3)(x+ 1) = 0 implies x = −1, 3 .

5. Given

∣∣∣∣∣∣∣
x− 6 0 −2

33 x+ 4 1

−3 2 x− 6

∣∣∣∣∣∣∣ = 0, find x.
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We compute C11, C12, and C13. Write

C11 = (−1)1+1

∣∣∣∣∣ x+ 4 1

2 x− 6

∣∣∣∣∣
= (x+ 4)(x− 6)− (1)(2)

= x2 − 2x− 24− 2

= x2 − 2x− 26

C12 = (−1)1+2

∣∣∣∣∣ 33 1

−3 x− 6

∣∣∣∣∣
= −[(33)(x− 6)− (−3)(1)]

= −[33x− 198 + 3]

= −33x+ 195

C13 = (−1)1+3

∣∣∣∣∣ 33 x+ 4

−3 2

∣∣∣∣∣
= (33)(2)− (x+ 4)(−3)

= 66 + 3x+ 12

= 3x+ 78

Therefore,∣∣∣∣∣∣∣
x− 6 0 −2

33 x+ 4 1

−3 2 x− 6

∣∣∣∣∣∣∣ = (x− 6) (x2 − 2x− 26)︸ ︷︷ ︸
C11

+(0) (−33x+ 195)︸ ︷︷ ︸
C12

+(−2) (3x+ 78)︸ ︷︷ ︸
C13

= x3 − 8x2 − 14x+ 156− 6x− 156

= x3 − 8x2 − 20x

= x(x2 − 8x− 20)

= x(x+ 2)(x− 10)

Because

∣∣∣∣∣∣∣
x− 6 0 −2

33 x+ 4 1

−3 2 x− 6

∣∣∣∣∣∣∣ = 0, we have x(x + 2)(x − 10) = 0 and so

x = −2, 0, 10 .



Lesson 35: Eigenvectors and Eigenvalues (I)

0. Basic Definitions

Definition 72. A vector is a matrix with only one column.

Ex 1.

[
1

−2

]
,

 −1

0

1

 are vectors.

Definition 73. For A a square matrix, there exists a number λ and a collection
of (non-zero) vectors ~vλ such that

A~vλ = λ~vλ.

We say λ is an eigenvalue of A and ~vλ is an eigenvector associated to λ.

Note 74. The vectors

[
0

0

]
and

 0

0

0

 do not count as eigenvectors.

Ex 2. Let A =

[
3 −1

2 0

]
, λ = 2, and ~v2 =

[
1

1

]
.

[
3 −1

2 0

][
1

1

]
=

[
3(1) + (−1)(1)

2(1) + 0(1)

]
=

[
2

2

]
= 2 ·

[
1

1

]
.

λ = 2 is an eigenvalue of A and the vector ~v2 =

[
1

1

]
is an eigenvector

associated to λ = 2.

Ex 3. Is

[
−1

3

]
an eigenvector of

[
4 −2

−21 3

]
associated to the eigenvalue

r = −3?

Solution:

[
−1

3

]
is an eigenvector of this matrix associated to r = −3 if the

following equation is true:[
4 −2

−21 3

][
−1

3

]
?
= −3

[
−1

3

]
.
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We check: [
4 −2

−21 3

][
−1

3

]
=

[
4(−1) + (−2)(3)

−21(−1) + 3(3)

]

=

[
−10

30

]
= 10

[
−1

3

]

Hence, we see that

[
−1

3

]
is not an eigenvector associated to r = −3. It is an

eigenvector associated to r = 10, but this was not the question.

Homework Structure

There are three types of problem on this homework:

(1) match the eigenvector to this matrix

(2) find the eigenvalues of this matrix

(3) find the eigenvalues and eigenvectors of this matrix

1. Matching Eigenvectors to Matrices

Examples.

1. Which of the following are eigenvectors of the matrix

A =

[
5 −12

2 −5

]
?

[
6

2

]
,

[
3

3

]
,

[
6

5

]
,

[
2

1

]

Solution: What does it mean to be an eigenvector? It means there exists
a number λ such that[

5 −12

2 −5

][
x

y

]
= λ

[
x

y

]
.

[
x

y

]
is an eigenvector only if there is such a λ. We check by matrix

multiplication whether this is true. Write[
5 −12

2 −5

][
6

2

]
=

[
5(6) + (−12)(2)

2(6) + (−5)(2)

]
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=

[
30− 24

12− 10

]
=

[
6

2

]
= 1

[
6

2

]
eigenvector

[
5 −12

2 −5

][
3

3

]
=

[
5(3) + (−12)(3)

2(3) + (−5)(3)

]

=

[
15− 36

6− 15

]
=

[
−21

−9

]
6= λ

[
3

3

]
not an eigenvector

[
5 −12

2 −5

][
6

5

]
=

[
5(6) + (−12)(5)

2(6) + (−5)(5)

]

=

[
30− 60

12− 25

]
=

[
−30

−13

]
6= λ

[
6

5

]
not an eigenvector

[
5 −12

2 −5

][
2

1

]
=

[
5(2) + (−12)(1)

2(2) + (−5)(1)

]

=

[
10− 12

4− 5

]
=

[
−2

−1

]
= −1

[
2

1

]
eigenvector

2. Finding Eigenvalues

By definition, an eigenvalue λ satisfies the equation

A~vλ = λ~vλ.

But, rearranging this equation, we see

0 = λ~vλ − A~vλ
⇒ 0 = (λI − A)~vλ

This means that the matrix λI − A is singular, which is to say

det(λI − A) = 0.

Key Concept: The eigenvalues of a matrix A are the λ such that

det(λI − A) = 0.

Fact 75. det(λI − A) is a polynomial of degree 2 when A is a 2× 2 matrix.

Examples.

2. Find the eigenvalues of the matrix

A =

[
4 −2

−21 3

]
.
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Solution: First, we determine λI − A:

λ

[
1 0

0 1

]
−

[
4 −2

−21 3

]
=

[
λ 0

0 λ

]
−

[
4 −2

−21 3

]

=

[
λ− 4 2

21 λ− 3

]
.

Second, we find det(λI − A), which will be a polynomial of degree 2. Write

0 = det(λI − A) =

∣∣∣∣∣ λ− 4 2

21 λ− 3

∣∣∣∣∣ = (λ− 4)(λ− 3)− 2(21)

= λ2 − 7λ+ 12− 42

= λ2 − 7λ− 30

= (λ− 10)(λ+ 3)

Solving (λ− 10)(λ+ 3) = 0, we conclude the eigenvalues of A are

λ = −3, 10 .

3. Finding Eigenvectors

Once we find the eigenvalues, we can determine the associated eigenvectors. Let[
x

y

]
be the eigenvector associated to λ. Setup the equation

(λI − A)

[
x

y

]
=

[
0

0

]

and then solve for x, y. This always yields a consistent dependent system of equations.
Recall that solving such a system involves introducing a free parameter, t. The easiest
way to do this is to put the augmented matrix[

λI − A 0

0

]

into row-echelon form.

Key Concept: The eigenvectors of A are the solutions to[
λI − A 0

0

]

for each eigenvalue λ of A.

Examples.



3. FINDING EIGENVECTORS 349

3. Find the eigenvalues and corresponding eigenvectors for the matrix

A =

[
0 −8

9 −17

]
.

Solution: We first need to determine the eigenvalues before we find the
corresponding eigenvectors.

Eigenvalues: We find the λ such that

0 = det(λI − A) = det

[
λ

[
1 0

0 1

]
−

[
0 −8

9 −17

]]

=

∣∣∣∣∣
[
λ 0

0 λ

]
−

[
0 −8

9 −17

]∣∣∣∣∣
=

∣∣∣∣∣ λ 8

−9 λ+ 17

∣∣∣∣∣
= λ(λ+ 17)− (8)(−9)

= λ2 + 17λ+ 72

= (λ+ 9)(λ+ 8)

Hence, λ = −9,−8 are the eigenvalues of the matrix.

Eigenvectors: We need to determine the eigenvectors for both eigenval-
ues. First, set up the matrix λI − A:

λ

[
1 0

0 1

]
−

[
0 −8

9 −17

]
=

[
λ 8

−9 λ+ 17

]
.

Next, for each of our eigenvalues, we put the following augmented matrix
into row-echelon form: [

λ 8 0

−9 λ+ 17 0

]
.

λ = −9: Write[
−9 8 0

−9 8 0

]
−R1+R2→R2

−−→

[
−9 8 0

0 0 0

]
−R1/9→R1

−−→

[
1 −8/9 0

0 0 0

]

Now, let y = t be the free parameter. Then the solution to this system
of equations is

x− 8

9
t = 0 ⇐⇒ x =

8

9
t.
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Thus, any eigenvector of A associated to λ = −9 is of the form[
(8/9)t

t

]
as long as t 6= 0. We need just one eigenvector, so choose t = 9. We conclude
an eigenvector associated to λ = −9 is[

8

9

]
.

λ = −8: Write[
−8 8 0

−9 9 0

]
−R1/8→R1

−−→

[
1 −1 0

−9 9 0

]
9R1+R2→R2

−−→

[
1 −1 0

0 0 0

]
.

Let y = t be the free parameter. The solution to the system of equations
is then

x− t = 0 ⇔ x = t.

Therefore, any eigenvector of A associated to λ = −8 is of the form[
t

t

]
for t 6= 0. Since we need only one such eigenvector, we choose t = 1 and
write [

1

1

]
.

4. Additional Examples

Examples.

1. Which of the following are eigenvectors of the matrix

A =

[
14 −12

20 −17

]
?

[
5

7

]
,

[
−7

−2

]
,

[
−4

−5

]
,

[
3

4

]

Solution: We write[
14 −12

20 −17

][
5

7

]
=

[
5(14) + 7(−12)

5(20) + 7(−17)

]

=

[
70− 84

100− 119

]
=

[
−14

−19

]
6= λ

[
5

7

]
not an eigenvector
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[
14 −12

20 −17

][
−7

−2

]
=

[
14(−7) + (−12)(−2)

20(−7) + (−17)(−2)

]

=

[
−98 + 24

−140 + 34

]
=

[
−74

−106

]
6= λ

[
−7

−2

]
not an eigenvector

[
14 −12

20 −17

][
−4

−5

]
=

[
14(−4) + (−12)(−5)

20(−4) + (−17)(−5)

]

=

[
−56 + 60

−80 + 85

]
=

[
4

5

]
= −1

[
−4

−5

]
eigenvector associated to r = −1

[
14 −12

20 −17

][
3

4

]
=

[
14(3) + (−12)(4)

20(3) + (−17)(4)

]

=

[
42− 48

60− 68

]
=

[
−6

−8

]
= −2

[
3

4

]
eigenvector associated to r = −2

2. Find the eigenvalues for the matrix

A =

[
−4 −2

4 2

]
.

Solution: We find the λ such that det(λI − A) = 0. We write

0 = det(λI − A)

= det

[
λ

[
1 0

0 1

]
−

[
−4 −2

4 2

]]

=

∣∣∣∣∣
[
λ 0

0 λ

]
−

[
−4 −2

4 2

]∣∣∣∣∣
=

∣∣∣∣∣ λ+ 4 2

−4 λ− 2

∣∣∣∣∣
= (λ+ 4)(λ− 2)− (2)(−4)

= λ2 + 2λ− 8 + 8

= λ2 + 2λ

= λ(λ+ 2)

Setting λ(λ+ 2) = 0, we conclude the eigenvalues of A are

λ = 0,−2 .
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3. Find the eigenvalues and corresponding eigenvectors for the matrix

A =

[
15 −3

−5 1

]
.

Solution: We start by finding the eigenvalues of A.

Eigenvalues: Write

0 = det(λI − A) = det

[
λ

[
1 0

0 1

]
−

[
15 −3

−5 1

]]

=

∣∣∣∣∣
[
λ 0

0 λ

]
−

[
15 −3

−5 1

]∣∣∣∣∣
=

∣∣∣∣∣ λ− 15 3

5 λ− 1

∣∣∣∣∣
= (λ− 15)(λ− 1)− (3)(5)

= λ2 − 16λ+ 15− 15

= λ2 − 16λ

= λ(λ− 16)

Setting 0 = λ(λ− 16), the eigenvalues of A are

λ = 0, 16 .

Eigenvectors: For each λ from above, we put the augmented matrix[
λ− 15 3 0

5 λ− 1 0

]

into row-echelon form.

λ = 0:[
−15 3 0

5 −1 0

]
−R1/15→R1

−−→

[
1 −1/5 0

5 −1 0

]
−5R1+R2→R2

−−→

[
1 −1/5 0

0 0 0

]

Let y = t, then

x− 1

5
t = 0 ⇔ x =

1

5
t.

The eigenvectors associated to λ = 0 are of the form[
(1/5)t

t

]
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for t 6= 0. Choosing one eigenvector, take t = 5:[
1

5

]
.

λ = 16: [
1 3 0

5 15 0

]
−5R1+R2→R2

−−→

[
1 3 0

0 0 0

]
Let y = t, then

x+ 3t = 0 ⇔ x = −3t.

Hence, the eigenvectors associated to λ = 16 are of the form[
−3t

t

]
for t 6= 0. We need only one eigenvector, so let t = 1:[

−3

1

]
.
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1. Quick Review

Examples.

1. The matrix

A =

 −11 4 6

−8 1 6

−16 4 11


has r = −3 as one of its eigenvalues. Which of the following is an eigenvector
associated to this matrix and eigenvalue? 2

2

1

 ,
 2

1

1

 ,
 2

1

2

 ,
 1

3

2


Solution: For any of these vectors to be an eigenvector of A associated

to r = −3, then we must be able to write −11 4 6

−8 1 6

−16 4 11


 x

y

z

 = −3

 x

y

z

 .
We check this via matrix multiplication: −11 4 6

−8 1 6

−16 4 11


 2

2

1

 =

 −11(2) + 4(2) + 6(1)

−8(2) + 1(2) + 6(1)

−16(2) + 4(2) + 11(1)



=

 −8

−8

−13

 not an eigenvector

 −11 4 6

−8 1 6

−16 4 11


 2

1

1

 =

 −11(2) + 4(1) + 6(1)

−8(2) + 1(1) + 6(1)

−16(2) + 4(1) + 11(1)



=

 −12

−9

−17

 not an eigenvector
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 −11 4 6

−8 1 6

−16 4 11


 2

1

2

 =

 −11(2) + 4(1) + 6(2)

−8(2) + 1(1) + 6(2)

−16(2) + 4(1) + 11(2)



=

 −6

−3

−6

 = −3

 2

1

2

 eigenvector associated to r = −3

 −11 4 6

−8 1 6

−16 4 11


 1

3

2

 =

 −11(1) + 4(3) + 6(2)

−8(1) + 1(3) + 6(2)

−16(1) + 4(3) + 11(2)



=

 13

7

18

 not an eigenvector

2. Factoring Cubic Polynomials

Fact 76. If A is a 3× 3 matrix, then det(λI − A) is a polynomial of degree 3.

Finding the eigenvalues associated to a 3× 3 matrix will require factoring a cubic
polynomial (polynomial of degree 3). This can be tricky so we go over a few tips.
First, let’s go over some basics about polynomials:

• A root or a zero is a number that makes a polynomial equal to 0

• A cubic polynomial has 3 roots, although some may be repeated

• A polynomial is called monic if the coefficient of the highest degree term is
1 (Ex: x2 + 1 is monic, 2x2 + 1 is not)

• If a polynomial is monic, then all the roots of the polynomial divide the
constant term

We use this last fact to factor the polynomials.

Key Assumption: The polynomial has only integer roots.

Method: Let f(x) be a monic polynomial of degree 3. To factor f(x), apply
the following:

(1) Write out all the divisors of the constant term

(2) Plug those values into f(x) until you find a root

(3) Use polynomial long division or synthetic division to factor f(x) into
a linear term and quadratic term

(4) Factor the quadratic term
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Ex 1. Factor the polynomial

f(x) = x3 − 4x2 + x+ 6

Step (1): Divisors of 6: ±1,±2,±3,±6

Step (2):

x = 1: (1)3 − 4(1)2 + 1 + 6 = 1− 4 + 1 + 6 6= 0 not a root

x = −1: (−1)3 − 4(−1)2 + (−1) + 6 = −1− 4− 1 + 6 = 0 a root

Step (3):

−1 −1 5 −6

1 −4 1 6

1 −5 6 0

which means

x3 − 4x2 + x+ 6 = (x+ 1)(x2 − 5x+ 6)

Step (4): x2 − 5x+ 6 = (x− 2)(x− 3)

We conclude that

x3 − 4x2 + x+ 6 = (x+ 1)(x− 2)(x− 3).

Examples.

2. Find the eigenvalues of the matrix

A =

 −9 4 8

−10 5 8

−6 2 7

 .
Solution: We find the λ that solves

det(λI − A) = 0.

Write

det(λI − A) = det


 λ 0 0

0 λ 0

0 0 λ

−
 −9 4 8

−10 5 8

−6 2 7


 =

∣∣∣∣∣∣∣
λ+ 9 −4 −8

10 λ− 5 −8

6 −2 λ− 7

∣∣∣∣∣∣∣ .
We expand along the first row. Recall that the determinant of a 3×3 matrix
expanded along the first row is

[(1, 1)-entry]C11 + [(1, 2)-entry]C12 + [(1, 3)-entry]C13.
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[(1, 1)-entry]C11

(λ+ 9)(−1)1+1

∣∣∣∣∣ λ− 5 −8

−2 λ− 7

∣∣∣∣∣ = (λ+ 9) [(λ− 5)(λ− 7)− (−8)(−2)]

= (λ+ 9)
[
λ2 − 12λ+ 35− 16

]
= (λ+ 9)

[
λ2 − 12λ+ 19

]
= λ3 − 12λ2 + 19λ+ 9λ2 − 108λ+ 171

= λ3 − 3λ2 − 89λ+ 171

[(1, 2)-entry]C12

(−4)(−1)1+2

∣∣∣∣∣ 10 −8

6 λ− 7

∣∣∣∣∣ = 4 [10(λ− 7)− (−8)(6)]

= 4 [10λ− 70 + 48]

= 4 [10λ− 22]

= 40λ− 88

[(1, 3)-entry]C13

(−8)(−1)1+3

∣∣∣∣∣ 10 λ− 5

6 −2

∣∣∣∣∣ = −8 [10(−2)− (λ− 5)(6)]

= −8 [−20− (6λ− 30)]

= −8 [−20− 6λ+ 30)]

= −8 [−6λ+ 10]

= 48λ− 80

Putting this all together,

det(λI − A) = λ3 − 3λ2 − 89λ+ 171 + 40λ− 88 + 48λ− 80

= λ3 − 3λ2 − 89λ+ 40λ+ 48λ+ 171− 88− 80

= λ3 − 3λ2 − λ+ 3

Now, that we have det(λI − A), we set this equal to zero and factor to
find our eigenvalues.

Let f(λ) = λ3 − 3λ2 − λ+ 3. We see this is monic and so we go through
our steps to factor.

Step (1): Divisors of 3: ±1,±3
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Step (2): λ = −1: (−1)3 − 3(−1)2 − (−1) + 3 = −1− 3 + 1 + 3 = 0, a
root

Step (3):

−1 −1 4 −3

1 −3 −1 3

1 −4 3 0

which means

λ3 − 3λ2 − λ+ 3 = (λ+ 1)(λ2 − 4λ+ 3)

Step (4): λ2 − 4λ+ 3 = (λ− 1)(λ− 3)

We conclude that

f(λ) = λ3 − 3λ2 − λ+ 3 = (λ+ 1)(λ− 1)(λ− 3).

Therefore, our eigenvalues are

λ = −1, 1, 3 .

3. Find the eigenvalues and corresponding eigenvectors for the matrix

A =

 −6 6 −6

0 2 2

0 3 3

 .
Solution: We find the eigenvalues and then the corresponding eigenvec-

tors.

Eigenvalues: Let

det(λI − A) = det


 λ 0 0

0 λ 0

0 0 λ

−
 −6 6 −6

0 2 2

0 3 3


 =

∣∣∣∣∣∣∣
λ+ 6 −6 6

0 λ− 2 −2

0 −3 λ− 3

∣∣∣∣∣∣∣ .
We expand along the first column:

[(1, 1)-entry]C11 + [(2, 1)-entry]C21 + [(3, 1)-entry]C31.

[(1, 1)-entry]C11

(λ+ 6)(−1)1+1

∣∣∣∣∣ λ− 2 −2

−3 λ− 3

∣∣∣∣∣ = (λ+ 6) [(λ− 2)(λ− 3)− (−2)(−3)]

= (λ+ 6)
[
λ2 − 5λ+ 6− 6

]
= (λ+ 6)(λ2 − 5λ)

= λ(λ+ 6)(λ− 5)



360 LESSON 36: EIGENVECTORS AND EIGENVALUES (II)

[(2, 1)-entry]C21

0(−1)2+1

∣∣∣∣∣ −6 5

−3 λ− 3

∣∣∣∣∣ = 0

[(3, 1)-entry]C31

0(−1)3+1

∣∣∣∣∣ −6 6

λ− 2 −2

∣∣∣∣∣ = 0

Thus,
0 = det(λI − A) = λ(λ+ 6)(λ− 5).

Our eigenvalues are therefore

λ = −6, 0, 5 .

Next, we find the eigenvectors associated to these eigenvalues.

Eigenvectors: We put λ+ 6 −6 6 0

0 λ− 2 −2 0

0 −3 λ− 3 0


into row-echelon form for each eigenvalue λ.

λ = −6:  0 −6 6 0

0 −8 −2 0

0 −3 −9 0

 −R1/6→R1

−−→

 0 1 −1 0

0 −8 −2 0

0 −3 −9 0


8R1+R2→R2

−−→

 0 1 −1 0

0 0 −10 0

0 −3 −9 0

 3R1+R3→R3

−−→

 0 1 −1 0

0 0 −10 0

0 0 −12 0


Now, we see this implies that y = z = 0 because −10y = 0 and −12z = 0.
Notice that there is not constraint on x — any x-value will make this system
of equations true. So all the eigenvectors associated to λ = −6 are of the
form  x

0

0


for x 6= 0. Since we only need one eigenvector, let x = 1: 1

0

0

.
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λ = 0:  6 −6 6 0

0 −2 −2 0

0 −3 −3 0

 R1/6→R1

−−→

 1 −1 1 0

0 −2 −2 0

0 −3 −3 0


−R2/2→R2

−−→

 1 −1 1 0

0 1 1 0

0 −3 −3 0

 3R2+R3→R3

−−→

 1 −1 1 0

0 1 1 0

0 0 0 0


Let z = t. Then we know that

y + t = 0 ⇐⇒ y = −t.

Further, we see

x− y + t = 0 ⇐⇒ x+ t+ t = 0 ⇐⇒ x = −2t.

All eigenvectors associated λ = 0 are of the form −2t

−t
t


for t 6= 0. For our answer, we take t = 1: −2

−1

1

.
λ = 5: 11 −6 6 0

0 3 −2 0

0 −3 2 0

 R1/11→R1

−−→

 1 −6/11 6/11 0

0 3 −2 0

0 −3 2 0


R2/3→R2

−−→

 1 −6/11 6/11 0

0 1 −2/3 0

0 −3 2 0

 3R1+R3→R3

−−→

 1 −6/11 6/11 0

0 1 −2/3 0

0 0 0 0


Let z = t. We know that

y − 2

3
t = 0 ⇐⇒ y =

2

3
t.
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Hence, we know

0 = x− 6

11
y +

6

11
t

= x− 6

11

(
2

3

)
t+

6

11
t

= x− 4

11
t+

6

11
t

= x+
2

11
t

⇒ − 2

11
t = x

Thus, we conclude eigenvectors associated to λ = 5 are of the form −(2/11)t

(2/3)t

t


for t 6= 0. We choose our eigenvector by taking t = 33, then −6

22

33

.



APPENDIX A

Functions

1. General Theory

A basic question that isn’t always answered directly in math classes is this: what
is a function?

A function is something that takes an input and sends it to an output with the
stipulation that identical inputs must go to the same output. The inputs and outputs
can be anything we want. For example, suppose we have a list of items from a grocery
store:

Items

Gallon of Milk

Frozen Pizza

Mint Chocolate Chip Ice Cream (1 pint)

Avocado

Soda (1 liter bottle)

We’ll call this list the inputs. Now, let’s put together a function which takes each
of these inputs and provides their price, which we’ll label outputs:

Prices

Price(Gallon of Milk)=2.15

Price(Frozen Pizza)=5.74

Price(Mint Chocolate Chip Ice Cream (1 pint))=3.56

Price(Avocado)=Price(Soda (1 liter bottle))=1.37

Price is a function: it sends one item to one price. Note, however, that the prices
need not be distinct.

If we took our lists in the other direction (that is, sending prices to items), we
would not have a function because the input 1.37 would be sent to two distinct items,
the avocado and the soda.

However, this example is unlikely to appear in a math class so let’s consider two,
more pertinent examples.

Ex 2. Suppose we were given f(x) = x2 + 1 for 0 ≤ x ≤ 1. Is this a function?
The 0 ≤ x ≤ 1 tell us our inputs are real numbers from 0 to 1 and our outputs are
some algebraic combination of these inputs (in particular, we are supposed to square
the input and then add 1). If we think about it, this is a function because for any
input x, we get only one output x2 + 1. If you sketch the graph, this would be an
application of the vertical line test.

363
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The notation f(x) is only meant as shorthand (so we don’t have to keep copying
down the specifics of the function every time we refer to it). In terms of functions,
whenever there are (·), this is informing the reader what inputs are allowed.

Ex 3. Is f(y) = y2 + 1 a function? Well, if you graph it, it fails the vertical line
test. But the vertical line test only applies to functions of x (in the usual xy-plane).
This is not a function of x because for x = 2, there are two outputs (y = −1 and
y = 1). But as the function is written, the inputs for this are not x but y. So, while
this is not a function of x, it is a function of y. The takeaway here is that whether
something is a function depends on what inputs we are considering.

2. Polynomials

Polynomials are functions that look like

x3 + x+ 1, −37x16 + 3x4 + x3 − 7x2 + 12, −4, x+ 1.

These should be familiar from previous math classes since they are among the most
well-behaved functions in mathematics. The following do not count as polynomi-
als:

x3/2 +
√
x+ 1, x3 + 1 + x−3,

x3 + x+ 1

x7 + 27
, 2x + 2.

Polynomials always have the variable as the base and the exponents are always
non-negative integers (for 37, 3 is the base and 7 is the exponent). Note that all
constants can be thought of as polynomials.

We say the degree of a polynomial is the largest exponent. For example,

deg(−7x3 + 2) = 3, deg(−3x+ 16) = 1, deg(x17 + 4x2 + x) = 17, deg(−3) = 0.

A root or zero of a polynomial is an input that makes the polynomial equal to
zero. For example, x = 2 is a root of x2 − 3x+ 2 because

22 − 3(2) + 2 = 4− 6 + 2 = 0.

The number of roots of a polynomial equals the degree of the polynomial. x2−3x+2
has 2 roots (x = 1, 2). However, these roots need not be distinct. The root x = 2
appears twice as a root of x2 + 4x+ 4.

We say a polynomial is monic if the coefficient of the highest degree term is 1.
For example, −3x+ 16 is not monic but x17 + 4x2 + x is monic.

Rational functions are simply polynomials divided by polynomials:

x3 + x+ 1

x7 + 27
, −4

x
,

x7 + x3 + 1

x8 + x
.

3. Exponential and Logarithmic

An exponential function is a function whose base is fixed and whose exponent
changes:

ex, 2x, 13x
2+7x+y.
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Logarithmic functions are the function inverses of exponential functions. For a some
fixed number,

loga a
x = x and aloga x = x.

In this class, we focus on ex and lnx since other exponential and logarithmic
functions behave in a very similar way.

ex: ex is a common function that might appear to be intimidating. Something to
know is that e ≈ 2.71828 is a number. It is not a variable or anything exotic — it
is just a number (albeit an important number). ex simply means we are taking e and
multiplying it by itself x times.

ex is helpful example for exploring different exponent rules, consider:

ea+b = eaeb and ea−b = eae−b.

If something is being added or subtracted in the exponent, then we can “separate”
over the same base. This also applies when the base is a variable:

xa+b = xaxb and xa−b = xax−b.

Moreover,
(ea)b = eab = (eb)a.

This means that when two things are being multiplied in the exponent, then the entire
function is being raised to a power. Observe that

ex
2

= ex·x = (ex)x

is not the same as
e2x = (ex)2.

Again, this also applies to the case when the base is a variable:

xab = (xa)b.

Recall that e−x =
1

ex
which means

1

e−x
=

1
1
ex

= ex.

Similarly,

x−n =
1

xn
and

1

x−n
= xn.

Observe that

xan

xbn
=

(
xa

xb

)n
.

Finally, note that ex > 0 for any x value.

lnx: All logarithmic functions come from lnx so we don’t lose any generality
focusing only on lnx. The primary characteristic of lnx is that it “undoes” ex, that
is,

ln ex = x and elnx = x.

This means that lnx is the function inverse of ex. ln x is very useful because of three
of its properties:
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(1) a ln b = ln ba

(2) ln(ab) = ln a+ ln b

(3) ln
(a
b

)
= ln a− ln b

lnx is only defined for x > 0.

4. Basic Trigonometry

Trigonometric functions relate the angles of right triangles to ratios of the lengths
of their sides:

cos θ =
adj

hyp
sin θ =

opp

hyp

sec θ =
hyp

adj
csc θ =

hyp

opp

tan θ =
opp

adj
cot θ =

adj

opp

Further, the following are important trig identities:

cos2 θ + sin2 θ = 1

1 + tan2 θ = sec2 θ

Figure 1. Right triangle with angle θ

Right triangles are also used to draw out the unit circle. Recall, on the unit circle,
cos θ is the x-value for any ordered pair and sin θ is the y-value where θ is an angle.

Once we know cos θ and sin θ, we can determine all the other trig functions:

sec θ =
1

cos θ
tan θ =

sin θ

cos θ

csc θ =
1

sin θ
cot θ =

cos θ

sin θ



4. BASIC TRIGONOMETRY 367

Figure 2. Unit Circle





APPENDIX B

Basic Differentiation Table

Let k and n be real numbers (that is, numbers like −17, π, 112.76, etc). Let f(x),
g(x) be functions in the variable x.

Properties of Differentiation

Addition
d

dx
[f(x) + g(x)] = f ′(x) + g′(x)

Subtraction
d

dx
[f(x)− g(x)] = f ′(x)− g′(x)

Constant Multiplication
d

dx
kf(x) = kf ′(x)

Basics

Polynomials
d

dx
k = 0

d

dx
xn dx = nxn−1 for n 6= 0

Trig
d

dx
cos(x) = − sin(x)

d

dx
sin(x) = cos(x)

d

dx
tan(x) = sec2(x)

d

dx
sec(x) = sec(x) tan(x)

Exponential
d

dx
ex = ex

Logarithmic
d

dx
ln(x) =

1

x
when x > 0
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Rules

Chain Rule
d

dx
[f(g(x))] = g′(x)f ′(g(x))

Product Rule
d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x)

Quotient Rule
d

dx

(
f(x)

g(x)

)
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2
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Basic Integration Table

Let k and n be real numbers (that is, numbers like −17, π, 112.76, etc). Let f(x),
g(x) be functions in the variable x. C stands for an arbitrary constant.

Properties of Integration

Addition
∫

[f(x) + g(x)] dx =
∫
f(x) dx+

∫
g(x) dx

Subtraction
∫

[f(x)− g(x)] dx =
∫
f(x) dx−

∫
g(x) dx

Constant Multiplication
∫
kf(x) dx = k

∫
f(x) dx

Basics

Polynomials
∫

0 dx = C∫
xn dx =

1

n+ 1
xn+1 + C for n 6= −1∫

x−1 dx = ln |x|+ C

Trig
∫

cos(x) dx = sin(x) + C∫
sin(x) dx = − cos(x) + C∫
sec2(x) dx = tan(x) + C∫
sec(x) tan(x) dx = sec(x) + C

Exponential
∫
ex dx = ex + C
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APPENDIX D

Exact VS. Decimal Answers

If Loncapa does not specify a decimal place, your answers are expected to be
exact. What does that mean? Consider the following example.

Suppose
16

3
is the answer to a question and instead you input 5.333. This will be

marked wrong because these are NOT the same number. 5.333 is only an approxi-

mation of
16

3
. To see this, write

16

3
− 5.333 =

16, 000

3, 000
− 15, 999

3, 000︸ ︷︷ ︸
5.333

=
1

3, 000

which is small certainly, but it is not 0.

16

3
is exact because you have all of the number’s information. In contrast, a

decimal approximation forces you to chop off the end of the number, thus losing
information.

Note that not all decimals are rounded. For example,
1

2
= .5 because

1

2
− .5 =

1

2
− 2

2
(.5) =

1

2
− 1

2
= 0.

There is no rounding which occurs when going from
1

2
to .5 which means .5 is exact.

The rule of thumb is this: if you need to round, then the answer is not exact. In
particular, if you plug a number into a calculator and the numbers keep going past
the edge of the screen, then the answer you are putting down is going to be rounded.
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APPENDIX E

Set Builder Notation

What does
{(x, y) : x ≥ 2, y ≤ 1}

mean? This just means we are looking at the set of ordered pairs (x, y) such that
x ≥ 2 and y ≤ 1. Whenever we write {something} we mean the set of something.
What’s a set? It’s just a collection of things. For example,

{bat, cat,mat}
is a set of 3 things that rhyme and

{�,4,©, �}
is a set of 4 shapes.

But sometimes, we want to take a set and talk about a smaller set (called a
subset). So we could write

{shapes : the shape has 3 sides}.
We think of the first part

{shapes︸ ︷︷ ︸
this part

: the shape has 3 sides}

as the type of thing we are looking at and the second part

{shapes : the shape has 3 sides︸ ︷︷ ︸
this part

}

tells us how those first things need to be. Read the “:” as a “such that”. This means
that

{shapes : the shape has 3 sides} = the collection of shapes such that the shape has 3 sides

This way of describing collections of things is called set builder notation.

Let’s interpret what the set

{(x, y) : ln(x+ y) 6= 1}
means. Well, we are looking at ordered pairs (x, y) such that ln(x + y) 6= 1. But if
we think about this, we know that ln e = 1, which means we only want x + y = e.
Hence, the two sets

{(x, y) : ln(x+ y) 6= 1} and {(x, y) : x+ y 6= e}
are actually the same set. Much of the time, there is more than one way to describe
a set in a helpful way.
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APPENDIX F

n! (n Factorial)

The expression n! (read: n factorial) means

n! = n(n− 1) · · · 2 · 1
with the convention that 0! = 1. For example,

1! = 1

2! = 2 · 1 = 2

3! = 3 · 2 · 1 = 6

4! = 4 · 3 · 2 · 1 = 24

5! = 5 · 4 · 3 · 2 · 1 = 120

6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

...

and so on in that pattern. In words, you multiply all the numbers between 1 and
n including 1 and n. So 12! is the product of all the numbers between 1 and 12,
including 1 and 12.

Example 1.

∞∑
n=0

1

n!
=

1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·

= 1 + 1 +
1

2
+

1

6
+

1

24
+ · · ·

Fact 77. Because of how n! is defined,

n!

(n− 1)!
= n.

Example 2.

7!

6!
=

7 · 6 · 5 · 4 · 3 · 2 · 1
6 · 5 · 4 · 3 · 2 · 1

= 7.
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